quinta-feira, 29 de setembro de 2011

Gases nobres

Hélio, argônio, neônio, xenônio, criptônio

Júlio C. de Carvalho*

Especial para a Página 3 Pedagogia & Comunicação
No final do século 19, toda uma família da tabela periódica foi isolada, quase de uma só vez: os gases nobres.

Os gases nobres (os elementos da família 18 da tabela periódica) são gases monoatômicos que possuem a camada eletrônica mais externa completa. Por isso, são elementos de baixíssima reatividade, que chegaram a ser chamados de inertes até que se provasse que é possível fazer alguns compostos com os representantes mais "pesados" da família. Por exemplo, Kr, Xe e Rn podem formar compostos químicos (mas com o F, Cl e O, os elementos mais eletronegativos, e em condições enérgicas).

Veja abaixo a distribuição eletrônica dos gases nobres. Repare que não há orbitais (nem subníveis) semipreenchidos, o que explica a pouca reatividade da família.

2He
10Ne
18Ar

36K

54Xe


86Rn
1s2














2s2 2p6














3s2 3p6
3d10












4s2
4p6
4d10

4f14









5s2
5p6

5d10











6s2

6p6

Quanto à descoberta tardia dessa família, vamos ver um pouco mais do histórico:

Hélio, é claro, no Sol

Justiça seja feita, o hélio não só foi descoberto bem antes dos outros gases nobres, como também foi o primeiro elemento descoberto fora da Terra: seu nome deriva do grego "hélios" (Sol), porque a sua presença foi determinada na coroa solar, em 1868, através da técnica de espectroscopia, em que se usa um prisma ou malha de difração para decompor a luz em diversos comprimentos de onda. Como cada elemento tem uma "assinatura" espectral única, foi possível deduzir que uma linha amarela (587,5nm) - até então não observada - deveria ser de um novo elemento. Esse novo elemento só foi isolado na Terra em 1895, e é relativamente raro aqui porque é capaz de escapar para o espaço. Ironicamente, o hélio é o segundo elemento mais abundante no universo, atrás apenas do hidrogênio.

Outros gases nobres

O próximo gás nobre descoberto foi o argônio (que é relativamente abundante na Terra, com quase 0,93% da atmosfera). Esse gás foi descoberto em 1894, quando Rayleigh e Ramsay tentavam determinar porque o nitrogênio isolado do ar (após a remoção do oxigênio e gás carbônico por reação) era mais denso que o nitrogênio produzido por reação (decomposição de amônia).

Os cientistas imaginaram que deveria haver um contaminante mais pesado no nitrogênio "do ar", ou algo mais leve no nitrogênio da amônia. Tratando o nitrogênio "do ar", com magnésio, para remover o N2, obtiveram um resíduo resistente a reações: o argônio. O nome argônio vem do grego "argos" ou "inativo", em referência à sua inércia química.

Imaginando que outros gases pouco reativos poderiam ser isolados do ar (e completar a tabela periódica), Ramsay e Travers trabalharam intensamente para isolar, nessa ordem, o hélio (1895), o criptônio (do grego "kryptos", ou escondido - já que a sua quantidade no ar são ínfimos 0,0001%), o neônio (do grego "neo", ou novo) e o xenônio (do grego "xenos", estrangeiro). Os três foram isolados em 1898. O radônio, um gás radioativo cujo isótopo mais estável tem uma meia-vida de cerca de 4 dias, foi isolado em 1900 por Dorn. Por causa dessa curta meia-vida, o radônio é muito raro: apresenta-se com apenas 10-15ppm na atmosfera.

Abundância e inércia química

Por quê esses gases passaram tanto tempo desconhecidos? Afinal, já havia químicos em busca da sistematização das substâncias e elementos químicos há pelo menos dois séculos, à época desses isolamentos. Que o xenônio, por exemplo, tenha sido descoberto tarde, entende-se - afinal, é um elemento relativamente escasso. Mas o argônio? Há 25 vezes mais argônio no ar do que CO2!

Ocorre que, sendo relativamente inertes, os gases nobres não participavam de reações e eram contabilizados como N2 ou como um erro experimental (erros de 1 ou 2% são considerados pequenos, dependendo da área em que se pesquisa). Só quando uma busca sistemática, feita sobretudo por Rayleigh, foi conduzida é que se isolou esses gases.

Destilação fracionada do ar

Outra razão importante para a demora no isolamento desses gases é a forma de separação. Afinal, remover os gases reativos (N2, O2, CO2, CO e outros) do ar é relativamente fácil. Mas, e quando se chega a uma mistura de gases nobres, como é que a separação pode ser feita? É aí que entra a destilação fracionada: os gases são liquefeitos e lentamente destilados, de forma que vão escapando da mistura de acordo com o seu ponto de ebulição. A tecnologia para essa liquefação, que exige temperaturas muito baixas, foi aperfeiçoada no final do século 19.

Veja no quadro a seguir a temperatura de ebulição dos principais gases presentes no ar liquefeito:

Gás
Ponto de ebulição (oC)
Abundância no ar (ppmv)
Principais
usos
He -268,9 5 Resfriamento de ímas em equipamentos médicos; mergulhos de profundos
Ne -245,9 18 Luminosos
Ar -185,7 9300 Lâmpadas incandescentes, atmosferas inertes
Kr -151 1 Luminosos e lâmpadas
Xe -109 0,09 Lâmpadas
N2 -195,8 790000 Matéria prima para adubos e indústria química
O2 -183 200000 Matéria prima para a indústria, gás de uso hospitalar

Devido à proximidade de pontos de ebulição, é mais difícil separar o Ar do O2 e o He do Ne. De forma geral, como a liquefação do ar é feita em larga escala, para obtenção de N2 e de O2, há uma produção suficiente de gases nobres - à exceção do hélio. Esse gás é produzido de forma mais barata a partir de gás natural (onde pode aparecer com até alguns %), mas tamanha é a sua utilidade em equipamentos biomédicos, que se prevê uma relativa escassez nos próximos anos. 
 
*Júlio C. de Carvalho é engenheiro químico e professor do curso de Engenharia de Bioprocessos e Biotecnologia da UFPR.

Nenhum comentário:

Postar um comentário

Observação: somente um membro deste blog pode postar um comentário.