Um monte
de tinta foi derramada em debates arqueológicos sobre a ocupação humana
dos continentes conhecidos hoje como Norte e América do Sul. Quando as
pessoas chegaram? Onde eles se estabeleceram primeiro? Como eles
chegaram lá?
P or
grande parte do século 20, as melhores respostas a essas perguntas
baseavam-se principalmente em pontas de lança de pedra com o nome de um
local onde foram encontradas perto de Clovis, Novo México. Esse tipo de
ferramenta de pedra ficou conhecido como ponta de Clovis, e o consenso
geral era que as pessoas que as fizeram provavelmente chegaram à ponta
noroeste da América do Norte há cerca de 13.000 anos, durante a última
era glacial, por meio de Beringia , uma grande ponte de terra que conectava a Ásia e a América do Norte nos dias de hoje.
Eu n
nas duas últimas décadas, no entanto, achados arqueológicos não só
empurrou o horário de chegada de volta por milhares de anos, mas acrescentou detalhes à
imagem complexa de exatamente como as pessoas chegaram e
spread-provavelmente várias vezes através de várias rotas. Alguns foram
altamente controversos, como um possível site de 130.000 anos na Califórnia. Enquanto isso, a tradição oral nativa americana foi estudada e ignorada .
A migração de grupos paleolíticos para as Américas é um dos debates
mais controversos da arqueologia, e cada nova descoberta muda esse
debate em uma direção ou outra.
Here are five examples
from the archaeological record of the materials left behind by some of
the earliest people living in North and South America.
Listen to our podcast about the 130,000-year-old site in California: “The Mastodon in the Room.”
1. Footprints in New Mexico
A group of fossilized footprints
was preserved on the shore of an ancient lake in today’s White Sands
National Park, New Mexico. Some of the footprints were made in a layer
of ancient sediment containing the seeds of an aquatic plant—organic
remains that could be carbon-dated. Recent research revealed that the
footprints were made between 21,000 and 23,000 years ago, probably over a
period spanning a few thousand years.
As pegadas
- provavelmente feitas por grupos de crianças e adolescentes - sugerem
que as pessoas chegaram a essa área muito mais cedo do que se pensava,
em uma época em que enormes mantos de gelo provavelmente bloqueavam
completamente o acesso pelo norte. Não está claro como essas pessoas
vieram para a América do Norte. Eles encontraram uma maneira de entrar
antes que os mantos de gelo bloqueassem completamente a passagem para o
sul? Eles viajaram para o sul ao longo da costa do Pacífico e depois se
mudaram para o interior? Os pesquisadores terão que encontrar mais
evidências antes que qualquer uma dessas perguntas seja respondida.
2. Datas de radiocarbono em Idaho
O sítio
arqueológico de Cooper's Ferry, Idaho, fica em um vale em uma curva do
Lower Salmon River. Este teria sido um excelente lugar para morar, com
recursos disponíveis. Escavações no local revelaram evidências de
incêndios em lareiras, carnificina de animais e fabricação de
ferramentas de pedra, sendo que as primeiras foram datadas em 2019 por volta de 15.000 a 16.000 anos atrás.
Esta descoberta
apóia a ideia de que as primeiras pessoas que viajaram pela ponte de
terra da Beringia desceram a costa do Pacífico, provavelmente em barcos,
seguindo as ricas áreas de caça e pesca das florestas de algas ao largo
da costa. Os mantos de gelo cobriam a maior parte do continente
norte-americano nessa época; apenas quando as pessoas alcançassem a foz
do rio Columbia (cerca de 480 quilômetros a noroeste do Lower Salmon
River), elas seriam capazes de se mover para o interior.
3. Genômica humana ancestral no Alasca
uma Os
restos mortais de jovem foram encontrados durante as escavações
arqueológicas de um cemitério no atual Alasca, dentro de uma lareira que
remonta a 11.500 anos. Uma comunidade agora chamada Upward Sun River,
na região central do Alasca, chamou a menina, que tinha cerca de 3 anos
na época de sua morte, Xach'itee'aanenh T'eede Gaay, que se traduz
livremente como "Garota-garota do nascer do sol". (Outra criança também
foi encontrada, uma criança da comunidade chamada Yełkaanenh T'eede
Gaay.)
W om a permissão da comunidade indígena local, os investigadores amostrados os restos de material genético. A análise deles ,
publicada em 2018, mostrou que enquanto Xach'itee'aanenh T'eede Gaay
estava relacionada aos povos indígenas contemporâneos, ela fazia parte
de uma linhagem até então desconhecida que se separou dos nativos
americanos modernos há cerca de 20.000 anos. Isso sugere que seu grupo
viveu isolado na Beringia, na Sibéria ou na América do Norte por um
longo tempo, cruzando a ponte de terra para a América do Norte mais cedo
do que se pensava e por um período de tempo muito mais longo do que se
pensava anteriormente.
4. Ferramentas de pedra nas Ilhas do Canal
Os arqueólogos descobriram implementos antigos, como pontas de pedra farpada que
eram usadas para caça e pesca no que hoje é conhecido como Ilha de
Santa Rosa nas Ilhas do Canal, na costa da Califórnia, cerca de 8.000 a
13.000 anos atrás. Essas ferramentas foram feitas com pedra local e têm
um formato distinto da região, sendo totalmente diferente das pontas de
Clovis.
O ther
objetos antigos das Ilhas do Canal incluir alguns dos cestaria mais
antigo da costa do Pacífico da América do Norte e flecha dicas em forma
de crescente pensado para ser feito especificamente para caça de aves aquáticas , como as pontas de meia-lua em forma de iria pular e desnatado através do água para seus alvos.
5. Fezes fossilizadas em Oregon
M uito
do comportamento humano no Paleolítico era muito diferente de qualquer
coisa que você ou eu poderia fazer hoje, mas pelo menos uma coisa
permanece tombadilhos consistente e de todos. Em 2008, coprólitos humanos ,
ou fezes fossilizadas, encontrados no local das cavernas de Paisley no
Oregon eram radiocarbono datados de 14.300 anos atrás. Isso é
surpreendentemente antigo.
A amostra
também forneceu DNA que corresponde a padrões genéticos comuns aos
povos indígenas atuais nas Américas e a alguns habitantes da Ásia
Oriental. As populações ancestrais provavelmente usaram a ponte de terra
Beringia para viajar para o leste para novos territórios, mas mais de
1.000 anos antes do aparecimento da tecnologia Clovis.
A amostra
também forneceu DNA que corresponde a padrões genéticos comuns aos
povos indígenas atuais nas Américas e a alguns habitantes da Ásia
Oriental. As populações ancestrais podem ter usado a ponte de terra
Beringia para viajar para novos territórios, mas mais de 1.000 anos
antes do aparecimento da tecnologia Clovis.
quarta-feira, 24 de novembro de 2021
Esses ossos pertencem a uma nova espécie de humano
Os restos mortais, encontrados em uma ilha nas Filipinas, sugerem que o
Homo luzonensis tinha menos de 1,2 metros de altura.
Os
cientistas encontraram alguns ossos e sete dentes pertencentes a uma
espécie humana até então desconhecida. Eles chamaram a nova espécie de Homo luzonensis , em homenagem à ilha de Luzon, nas Filipinas, onde foi encontrada.
Os ossos são minúsculos, sugerindo que o Homo luzonensis
tinha menos de 1,2 metros de altura. Isso o tornaria a segunda espécie
de diminuto humano a ser encontrado no sudeste da Ásia; em 2007,
cientistas anunciaram a descoberta do Homo floresiensis
, encontrado na ilha de Flores, na Indonésia, e apelidado de hobbit.
Ambas as espécies viveram cerca de 50.000 anos atrás, numa época em que a
Ásia também era o lar de nossa espécie, os Neandertais, e um grupo
chamado Denisovans. A nova espécie levanta muitas questões, incluindo
quem foram seus ancestrais e como ela se moveu.
Os cientistas encontraram alguns ossos e sete dentes pertencentes a uma espécie humana até então desconhecida. Eles chamaram a nova espécie de Homo luzonensis, em homenagem à ilha de Luzon, nas Filipinas, onde foi encontrada. Os ossos são minúsculos, sugerindo que o Homo luzonensis tinha menos de 1,2 m de altura. Isso o tornaria a segunda espécie de diminuto humano a ser encontrado no sudeste da Ásia; em 2007, cientistas anunciaram a descoberta do Homo floresiensis, encontrado na ilha de Flores, na Indonésia, e apelidado de hobbit. Ambas as espécies viveram cerca de 50.000 anos atrás, numa época em que a Ásia também era o lar de nossa espécie, os Neandertais e um grupo chamado Denisovans. A nova espécie levanta muitas questões, incluindo quem foram seus ancestrais e como ela se moveu.
Uma jovem mamute estava vagando há muito tempo perto do que se tornaria a
Costa Central da Califórnia, quando sua vida chegou ao fim
prematuramente. Embora ela tenha morrido em terra, seu corpo enorme
encontrou o caminho para o Oceano Pacífico. Carregados por correntes,
seus restos mortais foram à deriva por mais de 150 milhas da costa antes
de se estabelecerem a 10.000 pés abaixo da superfície da água, na
encosta de um monte submarino.
Lá ela se assentou por milênios, sua
existência conhecida por ninguém.
No entanto, tudo mudou em 2019, quando cientistas do Monterey Bay
Aquarium Research Institute tropeçaram em uma de suas presas enquanto
usavam veículos operados remotamente para procurar novas espécies de
águas profundas na costa de Monterey, Califórnia.
“Estávamos
voando e eu olho para baixo e vejo e penso 'isso é uma presa'”, disse
Randy Prickett, piloto sênior de ROV do instituto. Nem todos
acreditaram nele a princípio, mas Prickett conseguiu convencer seus
colegas a dar uma olhada mais de perto. “Eu disse 'se não pegarmos isso
agora, você vai se arrepender'”.
A
tripulação tentou coletar o objeto misterioso. Para sua consternação, a
ponta do espécime em forma de cimitarra se quebrou. Eles pegaram o
pequeno pedaço e deixaram o resto para trás.
Só
depois que os cientistas examinaram o fragmento tiveram certeza de que o
que encontraram era realmente uma presa. Mas de que animal e em que
período de tempo ainda era desconhecido.
A
descoberta de tal espécime no fundo do mar é incomum. Presas e outros
restos de esqueletos de criaturas pré-históricas são geralmente
encontrados no subsolo ou encerrados em permafrost perto do Círculo
Polar Ártico. Embora alguns espécimes tenham sido encontrados em águas
rasas no Mar do Norte na Europa Ocidental, os restos mortais de um
mamute, ou de qualquer mamífero antigo, nunca foram encontrados em águas
tão profundas.
Steven
HD Haddock, biólogo marinho do instituto que liderou a pesquisa de
2019, geralmente se concentra na bioluminescência e na ecologia de
organismos gelatinosos do fundo do mar. Mas ele não conseguiu resistir
ao fascínio desse obstáculo científico. Então ele reuniu uma equipe de
cientistas do instituto, da Universidade da Califórnia, de Santa Cruz e
da Universidade de Michigan para resolver o mistério.
A
pesquisa preliminar dos colegas do Dr. Haddock apresentou a
possibilidade de que este não era apenas um mamute - em vez disso, pode
ter sido um que morreu durante o Paleolítico Inferior, uma era que durou
de 2,7 milhões a 200.000 anos atrás e da qual espécimes bem preservados
são esparsos.
Um
estudo mais aprofundado deste espécime pode ajudar a responder a
perguntas de longa data sobre a evolução dos mamutes na América do
Norte. A descoberta também sugere que o fundo do oceano pode estar
coberto de tesouros paleontológicos que aumentarão nosso conhecimento do
passado remoto. Mas antes que a equipe pudesse realmente avançar a
ciência, eles teriam que voltar ao mar para coletar o resto da presa.
Em
27 de julho, embarquei no Western Flyer, o maior navio de pesquisa do
MBARI, com uma variedade de outros tripulantes. Junto com o passeio
estavam Daniel Fisher, um paleontólogo da Universidade de Michigan que
estuda mamutes e mastodontes, e Katherine Louise Moon, uma pesquisadora
de pós-doutorado na Universidade da Califórnia em Santa Cruz que estuda o
DNA de animais antigos.
Before
the outing, Dr. Moon was able to extract just enough DNA from the
broken tip to determine that the tusk came from a female mammoth. Her
conclusion was supported by Dr. Fisher, who said the tusk’s shape and
size were characteristic of a young female mammoth. Terrence Blackburn,
another researcher at Santa Cruz, was unable to join the trip, but his
preliminary work also provided an estimate of how many years it had been
since the mammoth died.
De
volta ao barco, demorou dois dias para chegar à montanha submarina onde
estava a presa, já que Haddock e seus colegas pararam em vários pontos
ao longo do caminho para coletar espécies raras e não descritas de
medusas e ctenóforos, invertebrados também conhecidos como geléias de
favo. O sol mal estava chegando ao horizonte na manhã de 29 de julho
quando o barco finalmente atingiu seu alvo. O Dr. Haddock e sua equipe
não perderam tempo em iniciar a busca, posicionando-se na sala de
controle do navio enquanto o resto da tripulação ainda tomava o café da
manhã.
Um
ar de excitação encheu a sala escura enquanto os cientistas assistiam
nas telas enquanto o ROV, batizado de Doc Ricketts em homenagem ao
famoso marinho biólogo que influenciou John Steinbeck ,
lentamente descia às profundezas. Quando o drone aquático chegou ao seu
destino, o lado de um monte submarino com cerca de 10.000 pés de
profundidade, a sala estava lotada de cientistas, engenheiros e membros
da tripulação do navio, todos ansiosos para testemunhar a redescoberta
da presa.
Quase
tudo no monte submarino inclinado abaixo do ROV estava coberto por uma
crosta negra de ferro-manganês. Isso a princípio dificultou a
localização da presa. No entanto, após menos de 15 minutos de busca, a
pedreira apareceu de repente em uma das telas.
“É exatamente como deixamos”, disse o Dr. Haddock.
A
tripulação ficou maravilhada, mas não podiam comemorar ainda. Eles
ainda tinham que coletar a presa e não havia garantia de que ocorreria
sem problemas. O Dr. Haddock e sua equipe estavam preocupados que o
dente longo pudesse ser muito frágil para ser removido, então eles
demoraram a registrar fotos e vídeos que poderiam ser usados para
criar um modelo 3-D no caso de quebrar durante a tentativa de
recuperação.
Esponjas
domésticas e dedos de plástico macio foram presos aos braços do veículo
para tornar mais fácil para os pilotos pegarem suavemente a presa. A
sala ficou em silêncio enquanto as garras pegavam o fóssil incrustado.
Todos na sala assistiram nervosamente enquanto o robô erguia a presa.
Então, com muito cuidado, o drone moveu o objeto para a gaveta de
coleta. No segundo em que a presa foi liberada, o silêncio foi quebrado
por uma torrente de aplausos. A presa foi encontrada e recuperada em
menos de duas horas.
Pouco
tempo depois, o ROV voltou à superfície e foi trazido de volta a bordo
do navio. O Dr. Haddock e o Dr. Fisher moveram a presa para o
laboratório do navio e não perderam tempo medindo, limpando e
fotografando o espécime.
Depois
de calçar um par de luvas e um macacão esterilizado, a Dra. Moon
juntou-se a eles. Ela puxou uma serra de arame e cortou um pedaço da
presa, permitindo-lhe tirar uma amostra de seu tecido mais interno. Ela
disse que esperava que esta amostra contivesse mais DNA de mamute do
que foi recuperado da amostra da ponta da presa dois anos atrás - o
suficiente para determinar a espécie de mamute que acabou nesta
sepultura aquosa, bem como sua linhagem.
“Estamos
todos incrivelmente entusiasmados”, disse o Dr. Moon. “Este é um
momento 'Indiana Jones' misturado com 'Jurassic Park'.”
No fundo do mar: recuperando um tesouro antigo
Em
27 de julho, cientistas que trabalhavam com o Monterey Bay Aquarium
Research Institute embarcaram em um navio de pesquisa para caçar um tesouro antigo perto da costa da Califórnia.
Eu os vi recuperá-lo e tirei algumas fotos →
Extrair
e analisar o DNA de animais antigos como este mamute “é bastante
rotineiro para nós agora, o que é uma coisa muito legal de se dizer”,
disse o Dr. Moon naquele dia na nave. Avanços recentes no campo do DNA
antigo permitiram estudos genéticos de animais de até um milhão de anos .
Depois
que a Dra. Moon coletou suas amostras, a presa foi entregue ao Dr.
Fisher para análise para revelar a idade do mamute quando ele morreu e
como eram as condições durante sua vida. Em novembro, nenhum dos
pesquisadores havia concluído seus estudos, mas seus resultados iniciais
parecem promissores.
A
presa, que tinha cerca de um metro de comprimento, estava coberta por
uma espessa crosta de ferro-manganês. O fundo do mar é rico nesses
metais e, em alguns lugares, uma casca de ferro-manganês se formará ao
redor de qualquer objeto que permaneça no mesmo lugar por tempo
suficiente - pelo menos alguns milhares de anos. A espessura da crosta
sugeria que a presa era velha, mas para descobrir exatamente quantos
anos, Dr. Blackburn, cujo laboratório em Santa Cruz é especializado em
geocronologia, estudou a decomposição de materiais radioativos em
amostras da ponta da presa original recuperada em 2019.
Ele
estimou que a presa estava no fundo do mar por muito mais de 100.000
anos, embora essas descobertas ainda não tenham sido revisadas por
especialistas e não sejam definitivas.
“É
um tesouro”, disse Dick Mol, paleontólogo do museu Historyland, na
Holanda, que não participou da recuperação ou análise da presa.
Presas
de mamute com mais de 100.000 anos são “extremamente raras”,
acrescentou Mol, e estudá-las poderia dar aos cientistas novos insights
sobre o Paleolítico Inferior, uma era mal compreendida da história da
Terra.
Os cientistas sabem que há cerca de 200.000 anos a Terra estava passando por um período glacial e nossos ancestrais estavam migrando para fora da África .
Mas eles não sabem exatamente como as mudanças climáticas do planeta
afetaram os mamutes e outros animais de grande porte durante esse
período. O que também não está claro é como a chegada à América do Norte
alterou a diversidade genética dos mamutes.
“Na
verdade, não sabemos muito sobre o que estava acontecendo durante
aquele período”, disse Fisher. “Não temos acesso a muitos espécimes
desse período e isso se deve em grande parte ao fato de que é difícil
ter acesso a sedimentos dessa idade.”
Os
mamutes, parentes peludos e de orelhas pequenas dos elefantes modernos,
apareceram pela primeira vez há cerca de cinco milhões de anos e foram
extintos há cerca de 4.000 anos. Os primeiros mamutes saíram da África e
se espalharam para o norte, evoluindo em espécies distintas ao longo do
caminho, até colonizarem grande parte do hemisfério norte.
Os
primeiros mamutes a se aventurarem na América do Norte eram conhecidos
como Krestovka ou mamutes da estepe. Esses mamutes vieram da Eurásia há
1,5 milhão de anos e o fizeram marchando pelo Estreito de Bering, que
não era coberto pela água como é hoje. Centenas de milhares de anos
depois, outra espécie de mamute, o mamute lanoso, também cruzou o
estreito de Bering e se juntou a seus primos na América do Norte. Os
dois se hibridizaram para produzir o mamute colombiano, mas ninguém sabe
exatamente quando. Um estudo recente estimou que o hibridização evento de ocorreu pelo menos 420.000 anos atrás , mas mais pesquisas são necessárias para confirmar isso.
Se
a presa for tão antiga quanto os cientistas suspeitam, "poderia
realmente ajudar a esclarecer o momento desse evento de hibridização",
disse Pete Heintzman, professor associado do Museu da Universidade do
Ártico da Noruega que estuda o DNA de mamutes e outras criaturas da era
do gelo.
Embora
a exposição à água salgada possa ser destrutiva para o tecido
biológico, o mar profundo pode ser ideal para a preservação do DNA.
“É
escuro, frio e ambientalmente estável”, disse o Dr. Heintzman, que não
está envolvido com a análise contínua da presa. Os vestígios mais bem
preservados normalmente vêm de permafrost e cavernas, que, como o mar
profundo, têm temperaturas baixas e estáveis e nenhuma luz.
Independentemente
de quanto DNA os cientistas são capazes de extrair dessa presa, há
muito que pode ser aprendido estudando seu tecido. Elefantes, mamutes e
outros proboscídeos armazenam grandes quantidades de informações em
suas presas. Eles crescem camada por camada, criando uma estrutura que
se assemelha a uma pilha de cones de sorvete. Como os anéis das
árvores, o tamanho e a forma dessas camadas podem dizer aos cientistas
muito sobre a história de vida do animal com resolução quase diária,
incluindo, no caso das fêmeas, com que frequência eles produziram
descendentes. Além disso, cada camada microscópica contém isótopos que
refletem o que o animal estava comendo. Esses isótopos podem ser
rastreados até locais específicos, permitindo que os cientistas aprendam
não apenas o que o animal estava comendo, mas também onde.
O
que quer que os cientistas consigam aprender com essa presa de mamute, é
improvável que seja o único remanescente preservado de um antigo animal
terrestre no oceano.
“Provavelmente
há muito mais por aí”, disse Mol, que ajudou a descobrir os restos
mortais de vários mamutes nas águas rasas do Mar do Norte. Ele
recomendou que os exploradores de alto mar "comecem a trazer
paleontólogos com eles quando exploram o fundo do mar, porque eles sabem
o que procurar".
O Dr. Haddock tira outra lição da descoberta: o mar profundo precisa de proteção contra mineração e perfuração.
“Neste
ambiente realmente único, pouco explorado e amplamente subestimado, há
muito valor em ter um habitat que não seja perturbado”, disse o Dr.
Haddock.
The
tusk was surrounded by polymetallic nodules, naturally forming clusters
of minerals found only in the deep sea that are rich in valuable
elements such as manganese, iron, nickel, titanium and cobalt. Although
no one has started harvesting the nodules, mining companies have not
been quiet about their desire to do so.
Se
o monte submarino onde o Dr. Haddock e sua equipe encontraram o
espécime tivesse sido perturbado pela extração de óleo ou minerais, é
provável que a presa tivesse sido soterrada por sedimentos e nunca
encontrada. O mar profundo é o maior habitat da Terra e a grande
maioria dele está desprotegido. Preservar este vasto e misterioso reino
não só pode garantir um futuro para as inúmeras criaturas que vivem lá,
dizem os cientistas, mas também pode garantir que tesouros naturais
antigos ainda possam ser encontrados.
“Para
mim, foi uma experiência única na vida ter esse encontro com essa
criatura”, disse Haddock. “Fico imaginando como era a vida para esse
mamute. Eu penso em como sua presa acabou no oceano e como ela estava
apenas esperando que a encontrássemos por tanto tempo. ”
Uma
manchete em uma versão anterior deste artigo distorceu a profundidade
em que a presa foi encontrada. Eram 10.000 pés, não 3.000. O erro se
repetiu no texto do artigo.
segunda-feira, 22 de novembro de 2021
Desvendando o mistério de como os dinossauros receberam seus nomes
Republish our articles for free, online or in print, under a Creative Commons license.
Many kids can recite an A-Z list of dinosaur names. They take special delight in defeating tongue-twisters like Carcharodontosaurus, Ekrixinatosaurus, Huehuecanauhtlus and Zuchengtyrannus.
Sir Richard Owen came up with the name dinosaur
in 1841 to describe the fossils of extinct reptiles. He coined the
word by combining the Greek words “deinos”, which means terrible, and
“sauros”, which means lizard.
What lies behind a name
O nome de um dinossauro diz algo sobre o próprio dinossauro. Os
cientistas costumam usar palavras de raiz grega ou latina para dar um
nome que descreve o dinossauro de alguma forma.
Os dinossauros, como todos os
organismos vivos, são classificados ou agrupados de acordo com as
semelhanças que compartilham, o que também indica suas relações
ancestrais entre si. Para fazer isso de forma objetiva, os cientistas
aplicam a cladística, uma metodologia que permite avaliar as relações dos organismos entre si com base em características compartilhadas.
Análise do mundo, de especialistas
De
acordo com o sistema de classificação, sempre há duas partes no nome de
um dinossauro - ou qualquer organismo vivo, para esse assunto - e ambas
devem ser colocadas em itálico. A primeira parte do nome é chamada de
nome do gênero e a segunda, o nome da espécie.
Pode haver várias espécies diferentes (variedades) de um gênero particular de um animal. Por exemplo, os humanos são Homo sapiens , mas no registro fóssil há vários outros membros do gênero Homo, por exemplo, Homo neanderthalensis e Homo erectus .
Antes que possa se tornar
oficial, e para evitar a duplicação, uma vez que os paleontólogos tenham
escolhido um novo nome, ele deve ser aprovado pela Comissão Internacional de Nomenclatura Zoológica .
Os paleontólogos também devem descrever completamente a anatomia do
dinossauro e explicar as análises cladísticas e a derivação do nome em
um jornal acadêmico revisado por pares.
Quem consegue ter um dinossauro com o nome deles
Apenas alguns paleontólogos
têm a oportunidade de nomear um dinossauro, e menos ainda têm espécies
com seus nomes. Os paleontólogos podem nomear um dinossauro se eles, ou
uma equipe de expedição, encontrarem um animal diferente de todos os
outros conhecidos.
Ocasionalmente, os restos de
um dinossauro podem ter sido escavados há muito tempo, mas investigações
subsequentes revelam que ele é na verdade um novo dinossauro. É o caso
do Sefapanosaurus zastronensis ,
o dinossauro com o nome mais recente da África do Sul, que foi escavado
há mais de 80 anos perto de Zastron, uma pequena cidade perto da
fronteira da África do Sul com o Lesoto. Na época em que foi coletado,
não tinha nome. Cientistas posteriores estudaram os ossos
superficialmente e os consideraram como os de outro dinossauro antigo
chamado Aardonyx .
Mas o material foi
recentemente reexaminado e considerado bastante diferente de qualquer um
dos dinossauros contemporâneos conhecidos.
Dado que o seu osso do tornozelo tinha uma forma transversal muito incomum decidimos nomear o dinossauro após esse recurso e dar-lhe um nome Sesotho, uma vez que este é o predominante idioma na área. Assim, Sefapanosaurus é
derivado de “sefapano” que significa “cruz” em Sesotho e “saurus” que é
grego para “lagarto”. A segunda parte é derivada do Zastron.
Como o Sefapnosaurus ,
muitos dinossauros são nomeados por características particulares em
seus esqueletos. Por exemplo, no ano passado, tive a sorte de fazer
parte da equipe que nomeou um raro dinossauro de quatro asas e cauda longa do nordeste da China, Changuraptor .
“Changu” significa “pena longa” em chinês e “raptor” refere-se aos seus
hábitos predatórios. A segunda parte do nome homenageia Yang Yandong,
presidente da Bohai University, que forneceu financiamento para obter o
espécime.
Há uma curiosa história sobre um dinossauro predador da África Austral chamado Syntarsus .
Trinta e dois anos depois de ser nomeado entomologista percebeu que o
nome já era dado a um besouro em 1869 e rebatizaram o dinossauro, para
nosso desânimo, Megapnosaurus , que significa “lagarto grande morto”.
Outro dinossauro do Sul Africano, que nomeou em 2010, é AARDONYX CELESTAE Celestae .
O nome deste dinossauro tem suas raízes em Afrikaans (“aard” significa
terra) e grego (“ônix” significa garra), e se refere ao fato de que o
animal tinha sedimentos ricos em ferro, ou hematita, envolvendo muitos
de seus ossos do pé. A segunda parte do Aardonyx nome
presta homenagem a Celeste Yates, que, como voluntária, fez a
preparação laboriosa e meticulosa dos fósseis, removendo a matriz
rochosa circundante na qual estavam embutidos.
Há dez anos, também fiz parte da equipe que o deu nome de Nqwebasaurus thwazi ,
o primeiro dinossauro com o nome de isi-Xhosa. Este dinossauro foi
descoberto nos penhascos de Kirkwood perto de Grahamstown, no Cabo
Oriental, por meus colegas Billy De Klerk do Museu de Albany e Callum
Ross dos Estados Unidos. Em isi-Xhosa, a região de Kirkwood é conhecida
como “Nqweba”. “Thwazi” significa corredor rápido.
Também tive o privilégio de fazer parte da equipe que chamou Zhouornis hani ,
um grande pássaro mesozóico da China. Neste caso, o pássaro madrugador
tem o nome de Zhou Zhonghe, um paleontólogo chinês que deu uma grande
contribuição aos estudos sobre a evolução inicial dos pássaros. O nome
da espécie homenageia o colecionador do espécime, Lizhuo Han.
Todos os nomes de dinossauros
têm um significado particular. É fascinante entender a origem de seus
nomes e aprender sobre as histórias às vezes peculiares por trás deles.
The
Conversation US faz parte de uma rede global de sites, todos dedicados a
uma missão: divulgar o conhecimento dos acadêmicos gratuitamente.
Editores em cinco continentes trazem uma diversidade de perspectivas
para você. Por favor, ajude a apoiar o trabalho de compreensão global e
compartilhamento de conhecimento.
Sabarini Pro
Editor, The Conversation Indonesia
O
aquecimento da superfície induzido pelo desmatamento é influenciado
pela fragmentação e extensão espacial da perda de floresta no Sudeste
Asiático marítimo
Octavia Crompton 5,1
, Débora Corrêa 2,3 , John Duncan 4 and Sally Thompson 1
O desmatamento nos
trópicos causa aquecimento, o que contribui para as mudanças climáticas
regionais. A perda de floresta ocorre em uma ampla gama de escalas
espaciais, produzindo uma variedade de padrões espaciais de terras
desmatadas e florestadas. Ainda não se sabe se os atributos espaciais
desses padrões influenciam a mudança de temperatura resultante.
Adotamos uma abordagem de diferenças em diferenças para analisar dados
de perda de floresta e temperatura da superfície da terra (LST) de
sensoriamento remoto no sudeste asiático marítimo. Descobrimos que o
desmatamento aumentou o LST, como esperado, mas que os aumentos de
temperatura foram menores quando a perda de floresta produziu paisagens
mais fragmentadas nas quais as bordas não florestais e florestais
estavam fortemente entrelaçadas. Os aumentos de temperatura foram
maiores onde a perda de floresta foi mais extensa. O aquecimento também
se estendeu para além do local da remoção da floresta, de modo que a
perda florestal aumentou as temperaturas em locais não perturbados até 6
km de distância. Diferentes padrões espaciais de desmatamento, por
exemplo, como podem ser produzidos pela agricultura de pequenos
proprietários em oposição ao desmatamento em grande escala, teriam,
portanto, impactos diferentes no clima local. Conservar florestas em um
raio de 4 km de terras agrícolas, áreas urbanas ou outros ambientes
sensíveis pode ajudar a evitar aumentos de temperatura que reduzem a
produtividade da terra e pioram a saúde humana.
O conteúdo original deste trabalho pode ser usado sob os termos da licença Creative Commons Atribuição 4.0 .
Qualquer distribuição posterior deste trabalho deve manter a atribuição
ao (s) autor (es) e ao título do trabalho, citação do periódico e DOI.
Entre as muitas consequências ambientais negativas do desmatamento tropical (Laurance 2004 , Barlow et al 2007 , Foley et al 2011 , Gibson et al 2011 , Hansen et al 2013 ), os aumentos de temperatura representam ameaças imediatas à produtividade agrícola, segurança alimentar (Schlenker e Roberts 2009 , Schlenker e Lobell 2010 ) e saúde humana (Abram et al 2014 , Wolff et al 2018 ).
A conversão da floresta para outros usos do solo nos trópicos diminui a
evapotranspiração, aumenta o albedo, reduz a aspereza aerodinâmica e,
portanto, a mistura vertical de ar, levando ao aquecimento em relação à
floresta não perturbada (Lawton et al 2001 , Ray et al 2006 , Mahmood et al 2014 , Lawrence e Vandecar 2015 , Li et al 2015 , Bright et al 2017 , Ellison et al 2017 ). Normalmente, este aquecimento aumenta a temperatura da superfície da terra durante o dia (LST) em 1 ∘ C – 2 ∘ C. Por exemplo, 50% da perda de floresta tropical em uma área de 5 × 5 km foi estimada para causar o LST médio a aumentar em C (Alkama e Cescatti 2016 ) e 1,08 ∘ C ± 0,25 ∘ C (Prevedello et al 2019 ). Pantropical, ao nível do site ( 1
ha) os dados de temperatura mostram que os LSTs locais são
consistentemente mais altos fora das regiões de floresta primária, com
aquecimento particularmente pronunciado após a conversão da floresta em
terras agrícolas (mínimo +1.6 ∘ C, máximo +13.6 ∘ C; Senior et al 2017 ). Por exemplo, um estudo em Sabah, Malásia, descobriu que a floresta primária era até 2,5 ∘ C mais fria do que a floresta de produção explorada seletivamente e até 6,5 ∘ C mais fria do que as plantações de dendê (Hardwick et al 2015 ).
Permanece,
entretanto, uma variação local considerável no aumento da temperatura
devido à perda de floresta. Esta variação é influenciada pela cobertura
da terra substituindo a floresta (Bright et al 2017 ), a condição da floresta remanescente (Blonder et al 2018 ), sua elevação (Zeng et al 2018 ), proximidade de corpos d'água (por exemplo, Cai et al 2018 )
, e o padrão espacial da cobertura florestal (por exemplo, efeitos de
borda decorrentes da fragmentação da paisagem; Mendes e Prevedello 2020 ).
Identificar quais fatores modificam a mudança de temperatura após a
perda florestal ajudaria a informar o manejo florestal e as políticas de
conservação (Cohn et al 2019 , Masuda et al 2019 ). Aqui nos concentramos em quatro propriedades espaciais de perda de floresta, apresentadas conceitualmente na figura 2 e
discutidas mais adiante. Especificamente, perguntamos se o aumento da
temperatura após a perda é sensível à quantidade de floresta
remanescente (cobertura florestal remanescente) e quão fragmentada ela
está. Medimos o grau de fragmentação da floresta como a densidade das
bordas florestais / não florestais após a perda da floresta (densidade
da borda). Também consideramos a extensão da perda de floresta - por
exemplo, se perder 40% da floresta em um raio de 1 km causa o mesmo
aquecimento na média (espacial) que perder 40% da cobertura florestal em
um raio maior - por exemplo, 4 km. Finalmente, questionamos se os
efeitos do aquecimento podem se propagar além do local da perda
florestal e influenciar a temperatura das áreas vizinhas.
Essas
propriedades espaciais não foram objeto de pesquisas específicas até o
momento. Por exemplo, a maioria dos estudos anteriores que estimam o
efeito da temperatura da perda florestal (por exemplo, Li et al 2015 , Alkama e Cescatti 2016 , Cohn et al 2019 , Prevedello et al 2019 )
não controlou as variações na fração de cobertura florestal
remanescente após a perda florestal. Esta abordagem assume, por exemplo,
que o efeito da temperatura da redução da cobertura florestal de 100%
para 50% é idêntico ao da redução da cobertura florestal de 50% para 0%.
Da mesma forma, estudos anteriores não controlaram as diferenças na
fragmentação da floresta remanescente. No entanto, áreas dentro de 100 m
das bordas da floresta são normalmente mais quentes, mais secas e
sujeitas a condições térmicas mais variáveis do que os interiores da
floresta (Williams-Linera 1990 , Matlack 1993 , Young e Mitchell 1994 , Chen et al 1995 , 1999 , Murcia 1995 , Saunders et al 1999 , Pohlman et al 2007 , Yan et al 2007 , Didham e Ewers 2014 , Magnago et al 2015 , Latimer e Zuckerberg 2017 , Bernaschini et al 2019 ).
Mudanças de temperatura observadas em escalas maiores do que isso devem
refletir o efeito agregado desses gradientes borda-interior e,
portanto, devem ser sensíveis ao padrão espacial de fragmentação da
floresta (Arroyo-Rodríguez et al2017, Mendes and Prevedello 2020). For example, Mendes and Prevedello (2020) found that fragmentation of a single forest patch into 100 patches in a km pixel (without reducing overall forest cover) reduced mean daily LST by C (Mendes and Prevedello 2020). While numerous measures of landscape heterogeneity could be considered (Cale and Hobbs 1994, Weibull et al2000, Wu et al2000, Fahrig et al2011, Fauset et al2017), most correlate with the length of forest 'edges', which therefore formed our metric of fragmentation (see figure 2(A)).
Similarly, most previous studies evaluate the temperature impacts of
forest loss at only one spatial scale of resolution—e.g. on a km grid (Alkama and Cescatti 2016, Prevedello et al2019).
This could be problematic, since other local climate responses to
deforestation, such as precipitation, behave differently across
different spatial scales (Lawrence and Vandecar 2015, Khanna et al2017). In a recent study, Zeppetello et al (2020) found more extreme warming when forest loss patches were between 33 and 100 km2
in area than in forest loss on smaller spatial scales, suggesting a
need to better quantify how the spatial extent of forest loss influences
temperature change. Finally, several studies indicate that warming due
to land cover change (Bassett et al2016, Cosgrove and Berkelhammer 2018, Cohn et al2019) may spread beyond the location where that change occurred. For example, Cohn et al (2019)
observed significant effects on temperature due to forest losses
occurring at sites up to 50 km away in the Brazilian cerrado. Nonlocal
temperature increases imply that conserving remaining forest can 'cool'
adjacent areas, providing a potentially important rationale for forest
conservation. Yet to date, only Cohn et al ( 2019 ) caracterizou esses efeitos não locais em sistemas que experimentam desmatamento.
Este
estudo está, portanto, estruturado em torno de três análises. O
primeiro aborda a sensibilidade das mudanças de temperatura induzidas
pela perda de floresta para (i) a fração de cobertura florestal
remanescente e (ii) a densidade das bordas da floresta associadas a ela
(Tópico de Pesquisa 1). O segundo aborda a sensibilidade das mudanças
de temperatura induzidas pela perda de floresta à variação na extensão
espacial sobre a qual ocorre a perda de floresta (Tópico de Pesquisa 2).
O último aborda se os locais podem aquecer devido à perda de floresta
que ocorre em áreas próximas, mas espacialmente distintas (Tópico de
Pesquisa 3).
Dois
desafios principais surgem na realização dessas análises. Em primeiro
lugar, a mudança de temperatura causada pela perda de floresta deve ser
separada de outros fatores potenciais de variação de temperatura, como a
variabilidade no El Niño-Oscilação Sul, Dipolo do Oceano Índico ou
oscilação Madden-Julian (Trenberth et al 2002 , Abood et al 2015 , Islam et al 2018 ).
Para isolar os efeitos da perda de floresta na temperatura, usamos uma
metodologia de 'diferenças em diferenças' (DiD). Em uma análise DiD, um
tratamento ou exposição ocorre para um grupo (o grupo de 'tratamento')
durante o período de estudo, enquanto outro grupo permanece não afetado
(o grupo de 'controle') (Angrist e Pischke 2008 ).
A diferença no resultado em relação a uma condição de linha de base é
avaliada para cada grupo; e as diferenças nessas diferenças entre os
grupos medem o efeito do tratamento. A abordagem DiD permite uma
atribuição robusta de mudança de temperatura ao desmatamento (a variável
de tratamento) controlando a mudança de temperatura em locais onde não
ocorre desmatamento (a variável de controle). Estudos globais
anteriores, como Alkama e Cescatti ( 2016 ) e Prevedello et al ( 2019 ),
também se baseou em abordagens DiD para isolar os efeitos da perda de
floresta na mudança de temperatura. O outro desafio na análise é
explicar a alta correlação entre as diferentes propriedades espaciais da
perda florestal (por exemplo, ver a figura 3 ),
bem como os diferentes valores que essas propriedades adotam ao longo
do tempo. Para isolar os efeitos da variável de interesse na resposta da
temperatura à perda de floresta, contamos com uma amostragem cuidadosa e
balanceamento dos conjuntos de dados usados para análise.
O
estudo foi conduzido usando o Continente Marítimo (MC), composto por
Brunei, Indonésia, Malásia, Filipinas, Cingapura e Timor Leste como
região de estudo de caso. A Figura 1 mostra
um mapa da área de estudo, sobreposto com perda de floresta de 2001 a
2019, ganho de floresta de 2001 a 2012 e cobertura florestal
remanescente em 2019. O MC experimentou rápida perda de floresta nas
últimas décadas devido à exploração madeireira, estabelecimento de
palmeira plantações de óleo e desmatamento em pequena escala (Gaveau et al 2016 , Austin et al 2017a , 2017b ).
Os efeitos do clima e da temperatura da perda de floresta na região têm
recebido menos atenção em modelagem regional e estudos de sensoriamento
remoto em comparação com, por exemplo, a Amazônia (estudos notáveis
são Mabuchi 2011 , Tölle et al 2017 , Takahashi et al 2017 , Chen et al 2019 , Tölle 2020 ).
O MC oferece, no entanto, uma ampla gama de contextos e escalas
espaciais sobre os quais ocorreu a perda de floresta (por exemplo, de
pequenas propriedades a plantações em grande escala; Austin et al 2017a ),
proporcionando uma oportunidade de avaliar seus efeitos na mudança de
temperatura. Os dados e análises foram todos realizados em 1 × escalas espaciais de 1 km, refletindo a resolução do produto MODIS LST, que formou a variável de resposta no estudo.
Figura 1. A
região de estudo é o Continente Marítimo (MC), composto por Brunei,
Indonésia, Malásia, Filipinas, Cingapura e Timor Leste. A coloração
vermelha mostra a perda de floresta no período de 2001–2019, o roxo
mostra o ganho da floresta no período de 2001–2012 e o verde mostra a
cobertura florestal remanescente em 2019. Os dados da cobertura
florestal são do conjunto de dados de cobertura florestal global (Hansen
et al 2013 ), e descrito na seção 2.2 .
As
seis nações e numerosas ilhas que compõem o MC são climática e
ecologicamente semelhantes. O MC encontra-se ao longo do equador; sua
temperatura é moderada pelos oceanos circundantes e apresenta
sazonalidade limitada (Sari et al 2007 , Gosling et al 2011 ).
O clima de monção regional bem desenvolvido significa que a
precipitação é a principal característica climática sazonal (Cavendish 2008 ). A estação chuvosa ocorre entre outubro e maio e a seca entre junho e setembro (McBride 1998 , Chang et al 2005 , Bowman et al 2010 ). O momento preciso da estação chuvosa varia no espaço e de ano para ano, dependendo da migração da monção indo-australiana.
Em
2000, a cobertura florestal no MC representava 5,6% da área florestal
global. Naquela época, 74% da Indonésia, 62% da Malásia e 92% de Papua
Nova Guiné eram naturalmente florestados (Hansen et al 2013 ). Extensa perda de floresta ocorreu em toda a região desde 2000 (Brookfield e Byron 1990 , Curran et al 2004 , Gaveau et al 2014 , 2016 ):
de 2000 a 2019, a Indonésia perdeu 26,8 Mha (17% da cobertura florestal
do ano 2000) e a Malásia 8,12 Mha (28% da cobertura florestal do ano
2000). Outros países MC são menos impactados; por exemplo, Papua-Nova
Guiné perdeu 1,49 Mha (3,5%) e as Filipinas perderam 1,23 Mha (6,6%) de
cobertura florestal desde 2000.
2.2. Conjuntos de dados
As
observações de sensoriamento remoto do LST foram usadas para
caracterizar a mudança de temperatura devido à perda de floresta. Os
resultados humanos e agrícolas estão mais intimamente relacionados à
temperatura do ar próximo à superfície (AT). No entanto, AT não pode ser
determinado para as partes do MC que estão sofrendo perda de floresta,
devido ao número limitado de estações meteorológicas em áreas
florestadas na região (De Frenne e Verheyen 2016 ).
Assim, o LST observável por satélite fornece uma medida consistente da
resposta da temperatura. LST se correlaciona intimamente com AT (Li et al 2016 , Heft-Neal et al 2017 ) e é a medida de temperatura usada em muitos estudos anteriores de perda de floresta (Peng et al 2014 , Zhao e Jackson 2014 , Li et al 2015 , Alkama e Cescatti 2016 , Schultz e cols. 2017 , Prevedello e cols. 2019 , Zeppetello e cols. 2020 ), facilitando a intercomparação.
Semelhante
a outros estudos de desmatamento contemporâneos, medimos a temperatura e
suas mudanças usando dados de satélite MODIS (Alkama e Cescatti 2016 , Prevedello et al 2019 , Zeppetello et al 2020 ). Especificamente, usamos o km 8 dias MODIS Terra LST dataset (MOD11A), que abrange o período de março de 2000 até o presente (Wan et al 2015 ).
Cada pixel nas observações LST de 8 dias é uma média de todas as
medições LST correspondentes coletadas dentro desse período de 8 dias,
feitas no tempo de passagem das 10:30 AM. Repetimos a análise com o
satélite MODIS Aqua, que difere do Terra principalmente por seu tempo de
viaduto às 13h30. Resultados semelhantes aos obtidos com Aqua foram
obtidos e estão incluídos nas informações complementares (disponíveis
online em stacks.iop.org/ERL/16/114018/mmedia ).
Os conjuntos de dados MODIS brutos contêm observações feitas com
ângulos de zênite entre 0 e 65 graus que podem produzir incerteza na
pegada espacial (Townshend et al 2000 , Campagnolo e Montano 2014 ).
Para minimizar essa incerteza, apenas as observações marcadas como 'boa
qualidade' e com ângulos de zênite de vista entre -10% e 10% foram
usadas.
Forest cover was obtained from the Landsat-derived global forest cover (GFC) dataset (Hansen et al2013),
which presents, at 30 m spatial resolution, global data for (1) percent
forest cover in the year 2000, including all natural or planted
vegetation greater than 5 m in height, and (2) the year during which a
stand-replacing disturbance occurred, if any. Following a
stand-replacing disturbance, the forest cover in the 30 m pixel is set
to zero. We converted the GFC dataset into yearly presence-absence data:
for a given year, pixels were defined as 'forest' if they contained cobertura florestal em 2000 (indicando florestas de alta integridade estrutural; Hansen et al 2020 ),
e não sofreu um distúrbio de substituição de povoamentos. A partir dos
dados de presença-ausência, definimos locais que representavam as
'bordas' da floresta, consistindo em pixels não florestais adjacentes
aos pixels da floresta (ver figura 2 (A)). Esses pixels de borda foram identificados com o algoritmo de detecção de borda Canny do Google Earth Engine (Canny 1986 ).
Como uma métrica de fragmentação da paisagem, a 'densidade de borda'
mede a fração da paisagem formada pelos limites da floresta.
Figure 2. (A) A 1 ×
1 km pixel that has experienced forest loss may contain a complex
spatial pattern of remaining forest cover (dark green), and non-forest
areas (pale green). This spatial pattern is summarised in this analysis
based on its 'remaining forest cover' FC (given by the proportion of the dark green areas within the 1 km assessment pixel), and by its 'edge density' η
(given by the fraction of the pixel that lies at a dark—pale green
interface). (B) The same fractional forest loss shown over two different
spatial extents, denoted by their radii R, with yellow-shaded
areas representing forest loss areas and unshaded areas showing
remaining forest cover. The box at the center of the circle corresponds
to the 1 km pixel shown in panel (A). (C) Temperature effects of forest
loss could also be experienced in neighbouring areas. To unambiguously
assess this, we consider temperature changes within pixels that do not
experience forest loss as a function of their distance Rin to the nearest forest loss area (in annuli between Rin and Rout).
Os
conjuntos de dados derivados de MODIS e GFC resultantes têm diferentes
resoluções espaciais e temporais. Para permitir a comparação entre esses
conjuntos de dados, agregamos os dados MODIS de 8 dias calculando o LST
médio anual (ano civil) e aumentamos os dados binários de
presença-ausência e borda do GFC para a 1 × grade MODIS de 1 km. Para cada 1 × pixel MODIS de 1 km e ano, a fração da cobertura florestal foi calculada como o número médio de 30 de 'floresta' que × pixels de 30 m ela continha. Da mesma forma, a 'densidade de borda' dentro de cada 1 × pixel de 1 km foi calculada como a fração de de 30 × pixels
30 m que foram classificados como bordas de floresta. Finalmente, a
perda de floresta em um determinado ano foi calculada como a fração da
floresta de 30 × 30 m pixels experimentando uma perturbação de substituição de povoamentos naquele pixel MODIS (sensu Hansen et al 2013 ) e ano.
Assim,
seguindo nossa manipulação inicial dos produtos de sensoriamento
remoto, obtivemos quatro camadas de dados para o MC anual, 1 × resolução de 1 km na projeção MODIS: temperatura da superfície da terra LST ( t ), cobertura florestal FC ( t ), perda florestal L ( t ) e densidade da borda para cada ano t no conjunto de dados.
As camadas que descrevem a cobertura e perda florestal - FC ( t ), L ( t ) e —Covar no conjunto de dados, conforme ilustrado na figura 3 . Os gráficos de dispersão na figura 3 ilustram essa covariação usando 10.000 pontos amostrados aleatoriamente, mostrando L versus FC (painel (A)), L versus η (painel (B)) e FC versus η (painel (C)). As distribuições marginais de cada covariável também são mostradas, alinhadas com o eixo relevante.
A Figura 3. O painel (A) mostra L versus FC ,
com as distribuições marginais de cada covariável mostradas como
histogramas nas laterais do gráfico. Os painéis (B) e (C) mostram de
forma semelhante L contra η e FC contra η .
2.3. Identificação de mudanças de temperatura atribuíveis à perda de floresta
Para construir uma métrica de diferenças em diferenças, primeiro consideramos a perda florestal fracionada ocorrendo em um pixel MODIS de 1 km j do , para uma determinada ano t perda de , com t perda de variando de 2002-2019. Devido a esta perda de floresta, a temperatura no ano seguinte, ,
deveria ser diferente do que seria se não houvesse perda de floresta.
Por outro lado, os pixels próximos que não foram afetados pela perda de
floresta também terão diferentes temperaturas médias anuais em em
comparação com os anos anteriores, mas isso será atribuído à variação
climática entre os anos (causada, por exemplo, pela progressão das
monções ou anomalias da temperatura da superfície do mar). A diferença
na mudança de temperatura experimentada nesses locais e nos locais
desmatados mede a mudança de temperatura devido à perda de floresta.
We thus compute the temperature change over time at sites affected by forest loss , between years and . We did not use data from year tloss, because the timing of forest loss within year tloss is not identified in the GFC dataset, and therefore offers a less ambiguous time from which to evaluate change:
For a given tloss, we computed this metric for all pixels located within 10 km of any pixel in which 50% or more forest loss occurred in tloss. These regions contained a range of clearing and
smaller scale disturbance (i.e. selective logging or road construction
at the frontiers of forest loss; Gaveau et al2014, Hansen et al2020),
and are referred to as 'assessment areas'. We removed from the
assessment areas all pixels identified as having more than 1% surface
water occurrence in the Joint Research Centre Global Surface Water
(Pekel et al2016) product, restricting the assessment pixels to those with minimal surface water.
Next, for each pixel j
in the assessment areas, control pixels were designated that were both
near enough to experience the same background climate conditions and far
enough to be unaffected by forest loss. Control pixels were selected to
have high forest cover, minimal local forest loss between the years
2000 and ,
minimal forest loss within a 10 km radius, and to lie within 25 km of
the pixel they controlled for. This process is illustrated schematically
in figure 4, and the quantitative criteria used to specify the control pixels are specified in table 1. For each pixel j and loss year tloss, applying these criteria produced a variable set of control pixels, . was computed and spatially averaged for each set of control pixels , giving . This average was subtracted from to form the DiD estimate of temperature change due to forest loss at pixel j in year tloss (see figure 4):
Figure 4. Illustration
of the criteria used to designate 'assessment' and 'control' areas. The
assessment area—shown in pale yellow—includes pixels that experienced
forest loss in a given year, and all pixels within 10 km of those
pixels. Pale green shows undisturbed forest areas that could provide a
control for the assessment area, and dark green shows the control area
for a specific pixel j. Control pixels are defined as described in section 2.3 and table 1. The differences-in-differences metric ξ is computed as the difference between in pixel j and averaged over the relevant control pixels.
Table 1. Criteria used in the data acquisition, filtering and processing steps.
Critério
Raciocínio
Aquisição de dados: critérios de avaliação
Todos os pixels dentro de 10 km de pixels com
Selecione pixels que experimentam perda significativa de t perda , e todos os pixels dentro de um bairro 10 km destes perda de pixels.
Aquisição de dados: critérios de controle
FC > 0,9
Selecione pixels com alta cobertura florestal.
Selecione pixels com perda mínima.
Selecione pixels com perda mínima em 10 km.
A distância do pixel de avaliação é km
Selecione pixels de controle e avaliação que experimentam condições climáticas semelhantes.
Dados: filtragem
10 km de distância mínima entre pixels
Minimize a autocorrelação espacial.
Filtro da pergunta 1 de pesquisa
Selecione os pixels que sofreram perda de floresta no ano t perda .
Selecione pixels com perda mínima em .
Filtro de tópico 2 de pesquisa
Selecione pixels com perda mínima de floresta fora do raio de interesse.
Selecione pixels com perda mínima de floresta nos anos anteriores ou posteriores à t perda .
Filtro de tópico 3 de pesquisa
no intervalo 0,1–0,2
Selecione pixels com perda de floresta de vizinhança 'significativa', ou seja, em anéis entre R in e R out .
L <0,02 e
Selecione pixels com perda mínima localmente e dentro do raio R in , para isolar os efeitos da perda que ocorre em .
Select pixels with minimal loss in .
FC > 0.9
Select pixels with high local forest cover.
To
address the second research topic (whether the spatial extent of loss
influences the spatially averaged temperature change due to loss), we
also computed spatial averages of ξ over circles with radius R ranging from 1 to 10 km, designating these averages as .
Forest
gain was not included in the analysis, as the GFC dataset includes
forest gain for the 2001–2012 period, but does not cover the period
after 2012. To minimise the influence of forest gain or regrowth on
temperature change, the analysis was limited to temperature change in
the year following that in which the considered loss occurred. This
makes two reasonable assumptions: (1) that in the year immediately after
forest loss, any forest regrowth is minimal, and (2) that any change in
vegetation within pixels not experiencing forest loss is too small, on
one-year timescales, to influence the 1 km LST.
2.4. Covariates: factors modulating temperature changes due to forest loss
We additionally produced data layers defining the forest loss and edge density over different radii R surrounding pixel j in year tloss: and . These were computed by defining concentric circles, with radii and 10 km, centered on each pixel j. Within each circle and for each loss year, the spatially averaged forest loss, LR, and edge density, ηR, were computed (see figure 2(B)). For example, is the mean forest loss occurring within 10 km of pixel j. These radially averaged layers are used in the analysis of spatial extent (Research Topic 2).
The
radially averaged layers were also used to produce spatial averages
over annuli of fixed width (1 and 2 km), denoted by their inner and
outer radii, Rin and Rout: . The average forest loss was computed within annuli with inner and outer radii corresponding to sequential values of R, by taking the areally-weighted difference in average forest loss between these circles. For example, represents the mean forest loss in year tloss within a 2–4 km annulus centered on pixel j.
These annular averages are used in the analysis of nonlocal warming
(Research Topic 3). The spatially averaged forest loss layers are
illustrated in figure 2, panels (B) and (C).
These covariates were computed for the years , tloss and , for all pixels in the assessment area for year tloss. For clarity, the index j is not written out beyond this point, and the year is only specified if it is different from tloss (e.g. for ).
3. Methods
A hypothesis testing approach was used to assess the sensitivity of ξ to FC, η, LR and .
Pixels from all years were pooled to form a single dataset, and the
analysis of change was centered in time around the relevant tloss for each pixel, as illustrated in figure 5. The differences in differences approach controls for interannual climate variability in figure 5. That is, prior to aligning the data around tloss, the differences in LST between years in the control
areas (i.e. temperature changes due to interannual climatic variability)
were subtracted from the differences in the target pixels. This
minimises the effects of interannual climate variability, allowing loss
years to be aggregated as shown in figure 5.
Figura 5. Para cada ano t perda de variando de 2002 a 2019, as áreas de perda foram sinalizadas usando os critérios . Os dados foram então alinhados em torno da t perda e agrupados em uma população.
Os testes de hipótese foram especificamente relacionados às diferenças no valor médio da métrica DiD - escrito como ,
onde a barra superior denota a média em todas as amostras - entre
subconjuntos de dados caracterizados por diferenças nas propriedades
espaciais de perda de floresta. Para abordar a covariação ilustrada na
figura 3 ,
adotamos uma abordagem de amostragem para equilibrar as distribuições
das covariáveis antes de cada teste de hipótese. Também exigimos pelo
menos 10 km de distância entre as amostras, para minimizar a
autocorrelação espacial.
3.1.
Tópico de pesquisa 1: como as características espaciais da floresta
modulam os efeitos da perda de floresta na temperatura
Nesta análise, executamos testes de hipóteses que compararam ξ entre pixels com valores altos e baixos de FC ou η . Esses grupos de pixels são chamados de 'partições'. No entanto, para entender os efeitos de FC ou η em ξ , a estrutura e a correlação entre L , FC e η reveladas na figura 3 precisam ser abordadas. Para fazer isso, uma vez que os dados foram particionados - por exemplo, com respeito ao FC - nós ainda amostramos dentro de cada partição para impor similaridade nas outras covariáveis espaciais - isto é, L e η .
The details of the sampling and balancing process are illustrated in figure 6, using the example of determining how FC affects ξ. Firstly, quantiles of FC were used to divide the data into 5 different FC partitions (figure 6(A)). Figure 6(A) shows the comparison between P1, the partition containing the 0–20th FC percentile range, and P5, the partition containing the 80-100th FC percentile range. Next, the distributions of forest loss L were compared between FC partitions (figure 6(B)). L was distributed differently in each FC
partition. To have balanced data for the analysis, we sub-sampled the
data to ensure that the partitions had similar distributions of L: we sorted the data in each partition into bins defined by L,
and sub-sampled the same number of pixels per bin between partitions.
This resulted in the same number of pixels per bin in each partition, as
illustrated in figure 6(C). Enforcing this similarity in the L distributions enabled us to control for the effects of L when comparing the mean ξ entre FC partições , ou seja, para compreender os resultados do 'mundo real' produzidos quando FC é alterado. Esta abordagem, entretanto, não separa os efeitos das mudanças simultâneas em FC e η em ξ , nem faz distinção entre η e FC como o driver das mudanças de temperatura observadas. Como FC é mais observável do que η , e a correlação entre FC e η é onipresente e inevitável (consulte a figura 3 ), é útil entender a sensibilidade das respostas de temperatura a FC e η conjuntamente no conjunto de dados.
Figure 6. Illustration of the approach used to address Research Question 1, using the covariate FC as an example. Panel (A) shows the distribution of FC with vertical lines indicating FC quantiles, which were used to delineate five partitions in the dataset, P1–P5. In this illustration, the hypothesis test will compare partitions Q1 and Q5. Panel (B) shows the corresponding distributions of forest loss L. These panels show that the distributions of L
differ within the tested partitions, a difference that could bias the
results of the hypothesis test. The subsets are therefore sub-sampled to
'balance' L between them, resulting in similar L distributions (panel (C)). The distributions of FC
for the balanced subsets (panel (D)) are similar to those of the
unbalanced data, but now contain similar distributions of loss. Finally,
panel (E) illustrates the response variable, the mean difference between high and low FC partitions.
To attribute changes in ξ to FC and η
independently of each other, we altered the balancing step so that the
binning was done in two dimensions. To isolate the effects of FC on ξ, the partitions were balanced with respect to both L and η; likewise, to isolate the effects of η on ξ, the partitions were balanced with respect to both L and FC. The mean difference between partitions, , was then computed from the balanced data as:
where h and l subscripts denote the high and low FC partitions, and the overbar indicates the mean of ξ within each partition. Confidence intervals for were bootstrapped to assess the significance of the differences in means.
was used to test against the null hypothesis that the difference is
zero, i.e. that there is no effect of the covariate on the observed
warming.
3.2. Tópico de pesquisa 2: como a mudança de temperatura após a perda de floresta é afetada pela extensão espacial da perda
Esta análise examinou a sensibilidade da variação da temperatura espacialmente média causada por perda de floresta, ξ R , para a perda da floresta espacialmente em média, G R , ao longo de um intervalo de cálculo da média lengthscales R .
Nossa expectativa era de que, se tudo o aquecimento ocorreu apenas em
resposta à perda de florestas dentro de pixels individuais (e não foi
influenciada pela perda ocorrendo em áreas vizinhas), estas médias
espaciais seria igual, independentemente do valor de R . Qualquer variação em ξ R em relação a R indicaria que outras interações espaciais estavam ocorrendo; portanto, ξ R foi estimado para cada uma das três faixas de perda fracionária que representam 'baixo' ( ), 'moderado' ( ) e 'alto' ( ) perdas florestais, e para 5 raios: R = 1, 2, 4, 6, 8 e 10 km. A 1 km 2 escala de pixel de também foi incluída e rotulada como R = 0.
Em todos os casos, exigimos que a perda florestal fora de R fosse pequena ( ) e essa , de modo que os efeitos medidos pudessem ser atribuídos a mudanças dentro da extensão de perda testada R durante o ano t perda . Para cada caso de perda 'baixa', 'média' e 'alta', a média ξ R foi calculada para cada subconjunto e raio R correspondentes . Os intervalos de confiança na média ξ R foram
inicializados. Dados suficientes para permitir comparações para perda de
floresta 'moderada' e 'alta' estavam disponíveis apenas para alguns dos
raios testados, pois há menos alto L R amostras de para maiores R .
Várias modificações do procedimento acima foram testadas: diminuindo os 5% limiar de 2% (relatado nas informações complementares); adicionando um filtro ; e equilibrar os dados com respeito a η R . Todas
essas modificações reduziram a quantidade de dados nos testes de
hipóteses, gerando resultados semelhantes, mas com maior incerteza. Os
resultados apresentados usam os critérios mais permissivos (não
modificados) e maximizam a quantidade de dados representados na análise.
3,3. Tópico de pesquisa 3: como os locais aquecem devido à perda de floresta próxima, mas não local
The sensitivity of ξ to nonlocal forest loss was assessed for undisturbed pixels with high forest cover (with L < 0.02 and FC > 0.9).
This simplifies the analysis by ensuring that changes in temperature
were not caused by local land cover change. We considered temperature
changes only at assessment pixels that experienced significant forest
loss across annuli of 1–2, 2–4, 4–6, 6–8 or 8–10 km from the undisturbed
pixel. 'Significant' loss in this case refers to a spatially averaged
loss in the range of (0.1–0.2). The apparently low average losses
reflect the limited number of undisturbed locations that also experience
high loss nearby—for example the maximum annular loss (averaged across
all annuli) was 0.12 (see table 4).
Forest loss effects were isolated to the annulus of interest by
requiring that forest loss within the inner radius was less than 2%: .
No further balancing of FC or η was needed in this analysis, because the range of FC and η was small in undisturbed assessment pixels. For each Rin, the mean temperature response for the sampled pixels was computed, and confidence intervals on the mean were bootstrapped.
4. Results
4.1. Influence of forest loss fraction on LST change
The initial dataset comprised 2.6 million pixels. Approximately 23 000 pixels experienced 50% loss in any given year (), and approximately 400 000 pixels experienced 10%
loss. A summary of how the pixels were distributed across the MC, and
the distribution of forest loss fraction in the dataset, is provided in
supplementary information table 1.
An
initial exploration of the data reveals that forest loss produces
warming, and that the magnitude of warming increases with increasing
forest loss. Box plots in figure 7 illustrate this warming trend over different spatial extents (a 1 ×
1 km pixel and a circle with a radius of 2 km). To facilitate
comparisons with previous studies reporting the mean warming due to
forest loss, figure 7 also shows the mean of ξ for each loss range and bootstrapped 95% confidence intervals on the mean. This same information is summarised in table 2, which also includes ξ at the R = 1 km lengthscale.
Figure 7. Box plots (blue) for the DiD metric as a function of forest loss L for two spatial scales of averaging: the 1 × 1 km pixel scale, ξ (panel (A)), and loss averaged over circles of radius R = 2 km, ξ2
(panel (B)). To facilitate comparisons to previously published studies,
the adjacent red dots show the mean for each range, along with the
bootstrapped 95% confidence intervals on each mean. Panel (B) omits the L2
= 0.8–1.0 data point due to insufficient data. Box plots show the
median (central line), the interquartile range (IQR) of the data (box
limits), and whiskers extend 1.5 IQR past the boxes. In all cases, the
data shown only include samples with minimal loss () outside the assessment pixel/averaging area.
Tabela 2. A métrica DiD com média espacial, , para subconjuntos com raios variados km, e perda proporcional varia L R . Os dados estavam restritos a , De modo que qualquer aquecimento observada é principalmente em resposta à perda de dentro do raio R . A coluna 'N' mostra o número de amostras. A mesma informação é exibida nos pontos vermelhos na figura 7 .
A
N
0.00–0.20
0.04 (−0.03–0.12)
924
0.20–0.40
0.31 (0.22–0.41)
891
0.40–0.60
0.60 (0.49–0.70)
744
0.60–0.80
0.85 (0.67–1.01)
310
0.80–1.00
0.97 (0.54–1.34)
48
L 1
N
0.00–0.20
0.18 (0.12–0.23)
1726
0.20–0.40
0.88 (0.81–0.95)
1952
0.40–0.60
1.67 (1.55–1.79)
900
0.60–0.80
2.47 (2.19–2.74)
247
0.80–1.00
3.56 (2.65–4.61)
30
L 2
N
0.00–0.20
0.21 (0.16–0.26)
1710
0.20–0.40
0.83 (0.75–0.91)
770
0.40–0.60
1.67 (1.45–1.88)
204
0.60–0.80
2.53 (2.01–3.09)
40
For 40%–60% loss, we estimated a warming effect of C for L, C for L1 and C for L2, as shown in figure 7 and table 2. The L1 and L2 estimates are similar to the 1.5 ∘C of warming found by Alkama and Cescatti (2016) for 50% forest loss, and bound the spatial scale in that analysis (R = 1 km corresponds to a spatial extent of km2, and R = 2 km to km2)—a
remarkable level of agreement considering the differences in study
area, temporal scale, and definition of controls used in the
differences-in-differences analyses in each study.
Figure 7
shows that many of the samples are negative, suggesting
deforestation-induced cooling. This is most likely due to a combination
of noise in the remote sensing data, and limitations of the methodology
(for instance, not accounting for vegetation changes in non-forested
areas). The 8-day averaging period of the MODIS LST product could also
produce negative DiD values in samples where the overpass days flagged
as 'good quality' (i.e. no cloud cover) differed between control and
target pixels. That is, because the MODIS LST data reflects the average
of all days within an 8 day period, differences in cloud free days
between control and assessment pixels within that period could bias the
results.
4.2. Research topic 1: how spatial forest characteristics modulate the temperature effects of forest loss
Warming
due to forest loss in the MC changes with the spatial properties of the
remaining forest cover. This effect is illustrated in figure 8, which shows how the temperature change following forest loss, ξ, differs between partitions of the data, with this difference between partitions denoted as .
The variable used to partition the data is the remaining forest cover
(panels (A)–(C)) or the remaining edge density (panel (D)). Thus, in
panels (A)–(C), a positive indicates more warming in locations with higher remaining forest cover, and a negative indicates less warming in locations with higher remaining forest cover. Where
(or equivalently, the 95% confidence intervals on the mean include 0),
there is no significant effect of remaining forest cover on the
temperature change caused by forest loss. To account for the possibility
that remaining forest cover only influences the temperature change
above some threshold value, the values are plotted as a function of the mean remaining forest cover in the lower partition, FCl. Panel (D) shows a similar approach, except that the partitions are now based on remaining edge density, such that shows the differences in warming due to difference in remaining edge density, , between the tested partitions.
Figura 8. Esta figura mostra a diferença na mudança de temperatura causada pela perda de floresta, , entre as partições com alta e baixa cobertura florestal remanescente FC (painéis (A) - (C)) e alta e baixa densidade de borda remanescente η (painel (D)). Painéis (A) - (C) mostram em função da cobertura florestal média remanescente na partição inferior, FC l , para cada FC par de quantis . Nestes painéis, positivo os
valores indicam mais aquecimento em locais com mais cobertura florestal
remanescente, e valores negativos indicam mais aquecimento em locais
com menos cobertura florestal remanescente. Os painéis (A) e (B) mostram
os dados amostrados para controlar as diferenças em L entre as partições, e o painel (C) mostra os dados amostrados para controlar ambos L e η . O painel (D) mostra a sensibilidade de à diferença na densidade média da borda entre as partições, , com L e FC controlados
para. As cores dos marcadores mostram, nos painéis (A) e (C), a
diferença na cobertura florestal média entre as partições, ; no painel (B), a diferença na densidade média da borda entre as partições, ; e no painel (D), a densidade média da aresta na partição inferior, η l .
Nos figura 8 painéis da (A) e (B), a estimativa —Diferenças
no aquecimento devido a diferenças na cobertura florestal remanescente —
foi calculado sem controlar os efeitos da densidade de borda. Desde
que a cobertura florestal remanescente na partição inferior esteja acima
de 10% (ou seja, ),
essas estimativas sugerem que o aquecimento devido à perda de floresta é
independente da cobertura florestal remanescente (ou seja, não
é significativamente diferente de zero). As diferenças no aquecimento
entre as partições de cobertura florestal remanescente alta e baixa
parecem ser substancialmente independentes do tamanho da diferença na
cobertura florestal remanescente entre as partições, . This is shown by the lack of any clear association between and the color of the symbols (indicating the difference in mean forest cover between partitions ) in panel (A). Samples with have negative ,
indicating that warming due to forest loss is amplified when the
clearing is nearly complete. Panel (B) shows the same data as panel (A),
with the marker colors now indicating the difference in mean edge
density between the tested partitions, . In this panel, it is clear that cases with smaller FCl (x axis) are associated with higher , como resultado da associação entre FC e η ilustrada na figura 3 .
O painel (B) sugere que a sensibilidade do aquecimento à cobertura
florestal remanescente não pode ser separada, nesta análise, da
sensibilidade à densidade de borda remanescente.
Panels
(C) and (D) present the isolated effects of remaining forest cover and
edge density. Panel (C) shows the differences in warming due to
differences in remaining forest cover, now controlling for the effects
of edge density in addition to forest loss (obtained by balancing the
data with respect to both variables). For all tested forest cover
partitions, the
values are effectively zero (confidence intervals for all tests include
zero), suggesting that remaining forest cover does not independently
influence the magnitude of temperature changes caused by forest loss.
Conversely, panel (D) shows the differences in warming between
partitions with low and high remaining edge density, with both forest
loss and remaining forest cover controlled for. Here, a clear trend
emerges, in which the least warming occurs when the remaining forest
cover has the highest edge density. For the most extreme η separation between partitions, where , the 'edgier' landscape warmed by nearly 1 ∘C less than the less 'edgy' landscape (C).
Supplementary information tables 2–4 provide further detail about the data in figure 8, including for each inter-quantile comparison.
4.3. Research topics 2 and 3: how temperatures respond to loss extent and to nonlocal forest loss
To illustrate the sensitivity of warming to the spatial extent of forest loss, figure 9(A) plots —the average temperature change due to forest loss in a circle of radius R—as a function of R. The same information is summarised in table 3. The analysis shows that, for a given proportional loss LR, the temperature response was greater for larger values of R. For example, considering 30%–40% loss (dark blue markers in figure 9(A), the average temperature increase over a 1 × 1 km pixel was C, while in a circle of radius 1 km, it was C. For 30%–40% forest loss occurring over a circle with radius 4 km, the average temperature increase was C. The confidence intervals on widen as both R and LR increase. Thus, the increase in with R becomes more uncertain as km. Additionally, no sensitivity to extent was observed for 'low' forest loss (), with the confidence intervals overlapping for all lengthscales except R = 0. Sample size and data availability make it challenging to unravel the dependence of to R
across all magnitudes of loss. This difficulty reflects the infrequent
occurrence in the dataset of large areas with high proportional loss
that meet the other sampling criteria.
Figura 9. (A) A mudança de temperatura média espacialmente devido à perda de floresta em um círculo de raio R , , Aumenta com o aumento de R , para diferentes fracções de perda, G R . Apenas amostras com foram analisados, para evitar qualquer influência da perda de floresta não local sobre , (B) A temperatura média aumenta em relação aos locais de controle, ,
em pixels não perturbados que sofreram perda significativa de floresta
em suas vizinhanças. Os dados são plotados para sequenciais de 1 ou 2 km
de largura denotados por seu raio interno R in anulares
, para o qual a perda anular média estava na faixa de (0,1–0,2). Para
isolar os efeitos da perda de floresta em cada anel, os dados foram
filtrados para conter apenas pixels com .
Tabela 3. mostra
o aquecimento médio, com intervalos de confiança bootrapped na média
entre parênteses, para subconjuntos com diferentes raios R e perda proporcional varia L R . A coluna mostra a perda proporcional média dentro dos subconjuntos. Os dados estavam restritos a , De modo que qualquer aquecimento observada é principalmente em resposta à perda de dentro do raio R . A densidade da borda ( ) e cobertura florestal remanescente ( ) são calculados em média sobre os raios R em torno dos pixels alvo (coincidindo com as regiões de avaliação para ).
R
L R
N
0
0.1–0.2
0.14
0.20 (0.16, 0.24)
4485
0.28
0.56
0
0.2–0.3
0.24
0.39 (0.32, 0.45)
1741
0.28
0.48
0
0.3–0.4
0.34
0.36 (0.28, 0.45)
786
0.26
0.42
1
0.1–0.2
0.14
0.44 (0.40, 0.48)
3756
0.21
0.57
1
0.2–0.3
0.24
0.69 (0.65, 0.74)
2600
0.21
0.49
1
0.3–0.4
0.34
0.98 (0.91, 1.05)
1607
0.21
0.43
2
0.1–0.2
0.13
0.46 (0.42, 0.50)
2730
0.21
0.57
2
0.2–0.3
0.23
0.82 (0.75, 0.89)
1045
0.20
0.50
2
0.3–0.4
0.33
1.20 (1.08, 1.32)
457
0.18
0.43
4
0.1–0.2
0.12
0.52 (0.45, 0.58)
857
0.19
0.58
4
0.2–0.3
0.22
0.84 (0.65, 1.03)
138
0.17
0.52
4
0.3–0.4
0.33
1.65 (1.31, 1.99)
37
0.16
0.46
6
0.1–0.2
0.12
0.48 (0.39, 0.57)
353
0.18
0.59
6
0.2–0.3
0.22
1.26 (0.94, 1.59)
36
0.18
0.54
8
0.1–0.2
0.12
0.51 (0.41, 0.61)
268
0.19
0.59
10
0.1–0.2
0.11
0.48 (0.38, 0.58)
287
0.19
0.56
The analysis depicted in figure 9(B) shows increased ξ in undisturbed pixels in response to forest loss of 10%
in neighboring locations. This increase is greatest when the forest
loss occurs immediately adjacent to the undisturbed site (i.e. Rin = 1 km), and remains significant at the 95% level
for forest loss occurring in the range of 4–6 km of the undisturbed
site. The information is also summarised in table 4.
Table 4. shows the mean warming for undisturbed forest pixels with neighborhood loss in the range (0.1–0.2), for annuli with inner radius of Rin and outer radius denoted Rout. The data was restricted to samples with L < 0.02 and . The mean edge density () and remaining forest cover () values across the annulus are also listed.
Rin
Rout
N
1
2
0.12
0.36 (0.29, 0.42)
1405
0.06
0.96
2
4
0.12
0.24 (0.18, 0.30)
1726
0.06
0.96
4
6
0.12
0.10 (0.04, 0.16)
1323
0.06
0.96
6
8
0.11
0.05 (−0.04, 0.13)
745
0.06
0.97
8
10
0.11
−0.03 (−0.11, 0.06)
599
0.06
0.96
5. Discussion
As
análises demonstram como a perda de floresta causa aumentos de LST no
MC, que são comparáveis em magnitude às estimativas pan-tropicais
anteriores de aquecimento induzido por desmatamento (Alkama e Cescatti 2016 )
e aumentam com o aumento da perda fracionária de floresta. O
aquecimento induzido pelo desmatamento diminui à medida que a
fragmentação (densidade da borda) da cobertura florestal remanescente
aumenta, com, no caso mais extremo da análise, uma redução no
aquecimento de C atribuível a uma diferença na densidade da borda de . Esse efeito é semelhante ao identificado por Mendes e Prevedello ( 2020 ),
que encontraram temperaturas mais baixas em paisagens florestais mais
fragmentadas. Diferenças metodológicas, no entanto, impedem uma
comparação direta da relação temperatura-fragmentação entre os estudos.
O
aquecimento associado à perda de floresta não muda por causa da
cobertura florestal remanescente (ou seja, os aumentos de LST não
dependem da fração de cobertura florestal remanescente). No entanto, a
fração da cobertura florestal covaria com a densidade da borda da
floresta, o que altera a magnitude do aquecimento devido à perda. Essa
covariação significa que, na prática, a cobertura florestal remanescente
após a perda pode influenciar a mudança do LST (figura 8 , painéis (A) e (B)). Pragmaticamente, a observação de maiores aumentos de temperatura no CM quando FC <10% sugere que manter um mínimo de 10% de cobertura florestal em 1 × escalas de 1 km pode ajudar a mitigar o aumento de temperatura devido à conversão da cobertura do solo.
A
perda de floresta que ocorre em áreas maiores parece causar mais
aquecimento do que a perda de floresta fracionada equivalente que ocorre
em áreas menores. Tamanhos de amostra limitados para áreas com grande
perda fracionária e grandes áreas de perda significa que a análise não
pôde determinar o limite superior das escalas sobre as quais essa
dependência de área pode ser aplicada. O aquecimento crescente com o
aumento da extensão da perda, no entanto, é visível até raios de 6 km e é
bastante evidente em escalas menores (por exemplo, ao comparar o
aquecimento entre 1 × pixel de 1 km e R escalas = 1 km). Este achado é inconsistente com um estudo anterior (Zeppetello et al 2020 ),
que mostrou que as mudanças de temperatura devido ao desmatamento
estavam relacionadas à área de desmatamento em regiões tropicais apenas
em grandes escalas. Especificamente, nenhum efeito de escala foi
encontrado para as áreas km 2 ,
incluindo a faixa de escalas sobre as quais a sensibilidade
significativa à extensão da perda aparece no presente estudo. Essa
discrepância não é surpreendente, dadas as diferenças metodológicas
entre os estudos. Em particular, Zeppetello et al ( 2020 )
analisaram as mudanças de LST após o desmatamento, sem usar áreas de
floresta intacta nas proximidades para controlar a variabilidade do
clima de fundo, como foi feito no presente estudo. Usar uma abordagem
DiD provavelmente aumentaria a sensibilidade da análise, reduzindo o
ruído na variável de resposta. As métricas espaciais da extensão da
perda também diferem entre os estudos (áreas de perda conectadas em
Zeppetello et al ( 2020 ) versus perda média em círculos de variável R apresentados aqui).
The
last finding is that LST increases associated with forest loss are not
confined to the location where forest removal occurs. Instead, areas
located at distances within 6 km from forest loss are warmed by the
nonlocal removal of trees. This finding is broadly consistent with
previous work in the Brazilian Amazon-Cerrado transition area (Cohn et al2019), which estimated that 10% forest loss would increase surface ATs by C
at undisturbed sites within 2–4 km of the loss. In the present study,
10% forest loss over the same 2–4 km annulus caused LST increases of C.
Although the temperature metrics (AT versus LST) and study areas
(Brazil versus the MC) differ between the studies, the findings are
broadly similar and suggest that forest loss in the tropics results in
nonlocal warming.
No geral,
os resultados sugerem a importância do padrão espacial e da escala ao
considerar as implicações da mudança de temperatura na perda de
floresta. Os mecanismos responsáveis por esses efeitos espaciais, no
entanto, permanecem obscuros, com vários mecanismos considerados
relevantes. As bordas da floresta sombreiam terras não florestadas
vizinhas (Zhou et al 2011 , Li et al 2012 ). As bordas da floresta são mais secas e quentes do que os interiores da floresta (Smit et al 2013 , Arroyo-Rodríguez et al 2017 ),
representando gradientes térmicos que são susceptíveis de gerar fluxos
de energia laterais. Se esses fluxos ocorrerem em escalas grandes o
suficiente, eles podem gerar uma circulação secundária de ar, levando ao
resfriamento em maior escala (o efeito da 'brisa da vegetação'; Mendes e
Prevedello 2020 ). Notamos, no entanto, que as escalas de comprimento associadas à métrica de fragmentação η ( km) são muito menores do que aqueles previamente observados para desencadear tais circulações de mesoescala (Avissar e Liu 1996 ).
Alternativamente, a heterogeneidade gerada por uma paisagem florestal
fragmentada pode aumentar a rugosidade aerodinâmica efetiva da
superfície da terra, aumentando a transferência turbulenta de momento e
energia entre a superfície e a atmosfera (Spracklen et al 2018 ).
Estudos de modelagem, por exemplo, mostram fluxos de calor latentes e
sensíveis à superfície aumentados causados por heterogeneidades
espaciais com escalas de comprimento de ≈10–10 3 m (Schmid e Bünzli 1995 ), aumentando o resfriamento da superfície.
Mais
simplesmente, o aquecimento não local provavelmente reflete a advecção
de ar quente de locais de perda de floresta para áreas vizinhas - um
fenômeno que foi melhor caracterizado em ambientes urbanos (Bassett et al 2016 , Cosgrove e Berkelhammer 2018 ).
Áreas maiores de perda de floresta (ou seja, maior extensão de perda)
podem amplificar os efeitos de muitos desses processos: por exemplo,
aumentando a conectividade da paisagem para fluxo de ar advectivo,
reduzindo a proporção de bordas de floresta para áreas de perda, ou
combinando locais e aquecimento não local. Embora as mudanças LST
observadas no MC não possam ser atribuídas a esses mecanismos com base
nas análises apresentadas aqui, há um escopo significativo para
trabalhos futuros para fazê-lo. Por exemplo, testar como as escalas de
comprimento de fragmentação afetam as respostas de temperatura poderia
discriminar entre os efeitos aerodinâmicos da heterogeneidade, emergindo
em 10–10 3 escalas de m (Schmid e Bünzli 1995 ) e circulações de mesoescala surgindo em ~ 10 5 escalas de m (Avissar e Liu 1996 , Cochrane e Laurance 2008 ).
Estudos
recentes indicaram que a altitude em que ocorre o desmatamento
influencia a resposta da temperatura da superfície da terra (Zeng et al 2020 ),
o que pode se tornar cada vez mais importante à medida que o
desmatamento ocorre cada vez mais em altitudes mais elevadas no Sudeste
Asiático (Feng et al 2021 ).
Variações na elevação não influenciaram os resultados do presente
estudo, no entanto, como 90% dos locais estavam localizados em elevações
de 250
m. No entanto, a metodologia DiD empregada aqui pode ser valiosa para
uma maior exploração dos efeitos da elevação na mudança de temperatura
induzida pelo desmatamento.
O
DiD e as abordagens de teste de hipótese usadas aqui permitem a
atribuição causal da mudança LST às propriedades espaciais da perda
florestal. Embora essa metodologia seja um ponto forte do estudo, ela
exigiu esforços cuidadosos para controlar as propriedades espaciais
confusas e covariáveis (por exemplo, ao separar os efeitos de FC de η ).
Consequentemente, embora o conjunto de dados inicial de perda de
floresta e mudança de temperatura fosse muito grande, as limitações dos
dados influenciaram as análises finais. Além disso, a metodologia não
leva em consideração o ganho de floresta, o recrescimento da vegetação
após a perda da floresta ou as mudanças na vegetação em áreas não
florestadas. Para o curto período de avaliação (1 ano) considerado aqui,
a influência desses fatores na temperatura da superfície é
provavelmente pequena em relação à perda de floresta, uma vez que a
perda de floresta constitui uma mudança gradual, enquanto o crescimento
da vegetação é mais gradual. No entanto, estimativas mais precisas do
aquecimento da superfície induzida pelo desmatamento seriam obtidas se
esses fatores fossem levados em consideração.
Outras
limitações do estudo incluem o uso de LST em vez de AT próximo à
superfície, visto que o AT é mais relevante para a produtividade da
cultura e a saúde humana (Wolff et al 2018 , Masuda et al 2019 ). No entanto, LST está fortemente correlacionado ao AT em todas as regiões e tipos de cobertura (Mutiibwa et al 2015 , Alkama e Cescatti 2016 , Pepin et al 2016 ),
e LST demonstrou responder às mudanças na cobertura da terra de forma
semelhante ao AT, embora com diferentes magnitudes Alkama e Cescatti ( 2016 ).
O conjunto de dados usado consiste em observações sem nuvens, que
presumivelmente têm temperaturas mais quentes do que dias nublados - uma
fonte potencial de distorção que pode ou não ser controlada pela
abordagem DiD. O uso de temperaturas médias anuais significa que a
análise não esclarece diretamente como os extremos de temperatura
respondem ao desmatamento e suas propriedades espaciais. Esses extremos
são presumivelmente as ocorrências em que o resfriamento derivado da
cobertura florestal pode ser mais importante. Os extremos de temperatura
escalam de forma não linear com as mudanças médias de temperatura
causadas pelo aquecimento global (Lewis et al 2017 ), e estudos de modelagem sugeriram que os impactos do desmatamento em ATs máximos sazonais no MC podem estar na faixa de 4 ∘ C – 12 ∘ C - muitas vezes maiores do que as mudanças detectadas aqui (Avila et al 2012 ).
No entanto, não temos conhecimento de qualquer relação prognóstica
entre o aquecimento da temperatura média anual e o consequente aumento
dos extremos que nos permita estimar mudanças nos extremos a partir dos
resultados presentes.
6. Conclusão
A
perda de floresta no MC faz com que os LSTs aumentem tanto no local do
desmatamento quanto nas áreas vizinhas. A magnitude do aumento de
temperatura depende das propriedades espaciais de perda de floresta e
cobertura florestal remanescente, com maior aquecimento médio associado
com (i) perda florestal resultando em menos de 10% da cobertura
florestal remanescente e (ii) perda florestal mais extensa do que
ocorrência de perda em escalas menores. Essas descobertas podem ser
atribuídas em grande parte ao papel das bordas da floresta na mitigação
do aquecimento, embora os fundamentos mecanicistas dessa relação exijam
mais exploração.
Os
resultados do estudo sugerem dois resultados pragmáticos para as
políticas de conservação florestal e gestão da terra: em primeiro lugar,
embora a fragmentação tenha sido há muito identificada como indesejável
para as florestas, estender a extensão do limite floresta-não-floresta
(um efeito colateral da fragmentação) reduz o aumento da temperatura.
Como os resultados mostram, mesmo pequenas quantidades de cobertura
florestal remanescente fornecem um efeito de resfriamento ( 10%);
Abordagens de gestão de paisagem que equilibram múltiplos usos
concorrentes enquanto preservam alguma cobertura de árvores (por
exemplo, agrossilvicultura, paisagens multifuncionais) forneceriam
alguma mitigação do aquecimento. Isso é importante devido ao risco que o
aquecimento global representa para muitas atividades econômicas que
usam terras adjacentes a florestas. Em segundo lugar, este estudo
corrobora uma observação anterior de propagação não local do aquecimento
de locais desmatados para áreas circunvizinhas. Esses efeitos não
locais criam uma oportunidade para avaliar os 'serviços de estabilização
do clima' oferecidos pelas florestas. Visto por esta lente, a
conservação da floresta pode evitar o aumento da temperatura nas terras
vizinhas que seria causado pela perda da floresta. Esse aquecimento
evitado pode ser avaliado em termos de evitar danos relacionados ao
calor - por exemplo, perda de produtividade agrícola ou impactos na
saúde humana.
Agradecimentos
A
manipulação dos dados geoespaciais foi realizada no Google Earth Engine
(GEE), e as análises subsequentes dos conjuntos de dados produzidos
foram realizadas em Python, utilizando o Microsoft Azure. Os autores
agradecem o financiamento da National Geographic Foundation / Microsoft
AI for Earth grant. Débora Corr a
é apoiado pelo Australian Research Council por meio do Center for
Transforming Maintenance through Data Science (Grant No. IC180100030),
financiado pelo governo australiano. Gostaríamos de agradecer a
Anneliese Sytsma e Dana Lapides pelos comentários e sugestões úteis
sobre o manuscrito.
Declaração de disponibilidade de dados
O
código JavaScript usado para extrair os dados no Google Earth Engine
(GEE), o conjunto de dados exportado do GEE e o código Python para
analisá-los estão disponíveis no Center for Open Science em: https://osf.io/38q7g (DOI 10.17605 / OSF.IO / X2YZJ ).
Os dados que suportam os achados deste estudo estão disponíveis abertamente no seguinte URL / DOI: https://osf.io/38q7g .