quarta-feira, 14 de julho de 2021

 O limite de frio das árvores


Os limites da faixa de baixa temperatura das espécies de árvores resultam da interação da fenologia, tolerância ao congelamento na descarga e requisitos de comprimento da estação para maturação. Na linha das árvores de baixa temperatura, as árvores se tornam vítimas de sua altura. 

É a aerodinâmica da árvore em forma de vida que impõe às árvores temperaturas do ar criticamente baixas e limitantes do crescimento, das quais as plantas de baixa estatura escapam. 

Os humanos não podem mudar o limite de baixa temperatura das árvores (a linha das árvores), mas podem ter removido árvores da linha das árvores por corte ou queima. A linha das árvores rastreia os meios sazonais de baixa temperatura, o limite de alcance das espécies de árvores rastreia os extremos de baixa temperatura. 

A linha das árvores é uma linha de referência bioclimática global mais importante contra a qual outras zonas bioclimáticas e os biomas associados podem ser definidos. Em altas altitudes ou latitudes, as árvores atingem os limites da faixa de baixa temperatura. Ao tentar uma explicação, os limites de alcance das espécies de árvores individuais (definidos pela tolerância ao congelamento) e o limite geral da árvore da forma de vida (definido pelas restrições de crescimento térmico) precisam ser distinguidos. 

A borda fria geral do nicho fundamental das árvores é chamada de linha das árvores, por definição, a borda inferior do cinturão alpino, uma linha de referência bioclimática mais importante. As árvores podem estar ausentes da linha das árvores devido a distúrbios ou interações bióticas. 

A borda local real da distribuição das árvores, o delineamento do nicho realizado, é impulsionada por efeitos estocásticos. Portanto, a teoria da linha das árvores e o teste de hipóteses estão inevitavelmente ligados ao conceito de nicho fundamental. 


References

    • Falster D.S.
    • Westoby M.
    Plant height and evolutionary games.
    Trends Ecol. Evol. 2003; 18: 337-343
    • Körner C.
    Alpine Treelines.
    Springer, 2012
    • Körner C.
    • Hiltbrunner E.
    The 90 ways to describe plant temperature.
    Perspect. Plant Ecol. Evol. Syst. 2018; 30: 16-21
    • Sakai A.
    • Larcher W.
    Frost Survival of Plants. Responses and Adaptation to Freezing Stress.
    Springer, 1987
    • Bodner M.
    • Larcher W.
    Chilling susceptibility of different organs and tissues of Saintpaulia ionantha and Coffea arabica.
    Angew. Bot. 1987; 61: 225-242
    • Iversen J.
    Viscum, Hedera and Ilex as climate indicators. A contribution to the study of the post-glacial temperature climate.
    Geol. Fören. Förhandl. 1944; 66: 463-483
    • Ohsawa M.
    • Nitta I.
    Forest zonation and morphological tree-traits along latitudinal and altitudinal environmental gradients in humid monsoon Asia.
    Glob. Environ. Res. 2002; 6: 41-52
    • Walther G.-R.
    • et al.
    An ecological “footprint” of climate change.
    Proc. R. Soc. B. 2005; 272: 1427-1432
    • Purves D.W.
    The demography of range boundaries versus range cores in eastern US tree species.
    Proc. R. Soc. B. 1989; 276: 1477-1484
    • Körner C.
    • et al.
    Where, why and how? Explaining the low-temperature range limits of temperate tree species.
    J. Ecol. 2016; 104: 1076-1088
    • Lenz A.
    • et al.
    Fast acclimation of freezing resistance suggests no influence of winter minimum temperature on the range limit of European beech.
    Tree Physiol. 2016; 36: 490-501
    • Lenz A.
    • et al.
    European deciduous trees exhibit similar safety margins against damage by spring freeze events along elevational gradients.
    New Phytol. 2013; 200: 1166-1175
    • Körner C.
    • Basler D.
    Phenology under global warming.
    Science. 2010; 327: 1461-1462
    • Huang J.G.
    • et al.
    Photoperiod plays a dominant and irreplaceable role in triggering secondary growth resumption.
    Proc. Natl. Acad. Sci. U. S. A. 2020; 117: 32865-32867
    • Yang Y.
    • et al.
    Explaining the exceptional 4270 m high elevation limit of an evergreen oak in the south-eastern Himalayas.
    Tree Physiol. 2020; 40: 1327-1342
    • Lenz A.
    • et al.
    Growth and carbon relations of temperate deciduous tree species at their upper elevation range limit.
    J. Ecol. 2014; 102: 1537-1548
    • Körner C.
    Carbon limitation in trees.
    J. Ecol. 2003; 91: 4-17
    • Loehle C.
    Height growth rate tradeoffs determine northern and southern range limits for trees.
    J. Biogeogr. 1998; 25: 735-742
    • Grace J.
    • Norton D.A.
    Climate and growth of Pinus sylvestris at its upper altitudinal limit in Scotland: evidence from tree growth-rings.
    J. Ecol. 1990; 78: 601-610
    • Millar C.I.
    • et al.
    From treeline to species line: thermal patterns and growth relationships across the krummholz zone of whitebark pine, Sierra Nevada, California, USA.
    Arct. Antarct. Alp. Res. 2020; 52: 390-407
    • Paulsen J.
    • Körner C.
    GIS-analysis of tree-line elevation in the Swiss Alps suggest no exposure effect.
    J. Veg. Sci. 2001; 12: 817-824
    • Körner C.
    The use of "altitude" in ecological research.
    Trends Ecol. Evol. 2007; 22: 569-574
    • Körner C.
    Alpine Plant Life.
    3rd edn. Springer, 2021
    • Karger D.N.
    • et al.
    Why tree lines are lower on islands - climate and biogeographic effects hold the answer.
    Glob. Ecol. Biogeogr. 2019; 28: 839-850
    • Holtmeier F.-K.
    • et al.
    Regeneration of trees in the treeline ecotone: northern Finnish Lapland.
    Fennia. 2003; 181: 103-128
    • Kaspar J.
    • Treml V.
    The causes of upper tree limits in the mountain ranges of Central Europe north of the Alps - a stem growth perspective.
    J. Veg. Sci. 2018; 29: 1007-1016
    • Carbon A.
    • et al.
    Temperature and water potential co-limit stem cambial activity along steep elevational gradients.
    New Phytol. 2020; 226: 1325-1340
    • Dolezal J.
    • et al.
    Sink limitation of plant growth determines tree line in the arid Himalayas.
    Funct. Ecol. 2019; 33: 553-565
    • Noroozi J.
    • Körner C.
    A bioclimatic characterization of high elevation habitats in the Alborz mountains of Iran.
    Alp. Bot. 2018; 128: 1-11
    • Paulsen J.
    • Körner C.
    A climate-based model to predict potential treeline position around the globe.
    Alp. Bot. 2014; 124: 1-12
    • Tranquillini W.
    Physiological Ecology of the Alpine Timberline: Tree Existence at High Altitudes with Special References to the European Alps.
    Springer, 1979
    • Grace J.
    • et al.
    Climate and the meristem temperatures of plant communities near tree-lines.
    Oecologia. 1989; 79: 198-204
    • Körner C.
    Climatic controls of the global high elevation treelines.
    in: Goldstein M.I. DellaSala D.A. Encyclopedia of the World’s Biomes. Elsevier, 2020: 275-281
    • Germino M.J.
    • Smith W.K.
    Sky exposure, crown architecture, and low-temperature photoinhibition in conifer seedlings at alpine treeline.
    Plant Cell Environ. 1999; 22: 407-415
    • Brodersen C.R.
    • et al.
    Photosynthesis during an episodic drought in Abies lasiocarpa and Picea engelmannii across an alpine treeline.
    Arct. Antarct. Alp. Res. 2006; 38: 34-41
    • Hobbie S.E.
    • Chapin F.S.
    An experimental test of limits to tree establishment in Arctic tundra.
    J. Ecol. 1998; 86: 449-461
    • Tumajer J.
    • et al.
    Forward modeling reveals multidecadal trends in cambial kinetics and phenology at treeline.
    Front. Plant Sci. 2021; 12: 613643
    • Körner C.
    Winter crop growth at low temperature may hold the answer for alpine treeline formation.
    Plant Ecol. Divers. 2008; 1: 3-11
    • Körner C.
    • Paulsen J.
    A world-wide study of high altitude treeline temperatures.
    J. Biogeogr. 2004; 31: 713-732
    • Körner C.
    Treelines will be understood once the functional difference between a tree and a shrub is.
    Ambio. 2012; 41: 197-206
    • Hoch G.
    • Körner C.
    Growth and carbon relations of tree forming conifers at constant vs. variable low temperatures.
    J. Ecol. 2009; 97: 57-66
    • Rossi S.
    • et al.
    Evidence of threshold temperatures for xylogenesis in conifers at high altitudes.
    Oecologia. 2007; 152: 1-12
    • Alvarez-Uria P.
    • Körner C.
    Low temperature limits of root growth in deciduous and evergreen temperate tree species.
    Funct. Ecol. 2007; 21: 211-218
    • Schenker G.
    • et al.
    Physiological minimum temperatures for root growth in seven common European broad-leaved tree species.
    Tree Physiol. 2014; 34: 302-313
    • Wieser G.
    • et al.
    Effects of climate change at treeline: lessons from space-for-time studies, manipulative experiments, and long-term observational records in the central Austrian Alps.
    Forests. 2020; 10: 508-523

Nenhum comentário:

Postar um comentário

Observação: somente um membro deste blog pode postar um comentário.