segunda-feira, 30 de setembro de 2019

Pesquisa entre humanos com quatro espécies de hominídeos extintos

29 de julho de 2019 por News Staff / Fonte
Como o Homo sapiens, anatomicamente moderno, migrou da África e do resto do mundo, eles se conheceram e cruzaram com pelo menos quatro espécies diferentes de hominídeos, de acordo com uma nova pesquisa da Universidade de Adelaide, na Austrália. Surpreendentemente, desses homininos, apenas neandertais e denisovanos são atualmente conhecidos; os outros permanecem sem nome e foram detectados apenas como traços de DNA sobreviventes em diferentes populações modernas.
Reconstrução do Homo floresiensis, uma espécie de hominídeo extinto que viveu na ilha indonésia de Flores entre 74.000 e 18.000 anos atrás. Crédito da imagem: Elisabeth Daynes.
Reconstrução do Homo floresiensis , uma espécie de hominídeo extinto que viveu na ilha indonésia de Flores entre 74.000 e 18.000 anos atrás. Crédito da imagem: Elisabeth Daynes.
 
"Cada um de nós carrega dentro de nós os traços genéticos desses eventos misturados passados", disse o Dr. João Teixeira , co-autor de um artigo publicado no Proceedings da Academia Nacional de Ciências .
 
“Esses grupos arcaicos eram generalizados e geneticamente diversos, e sobrevivem em cada um de nós. A história deles é parte integrante de como chegamos a ser. ”
 
"Por exemplo, todas as populações atuais mostram cerca de 2% dos ancestrais neandertais, o que significa que a mistura de neandertais com os ancestrais dos seres humanos modernos ocorreu logo depois que eles deixaram a África, provavelmente entre 50.000 a 55.000 anos atrás em algum lugar do Oriente Médio".
 
Mas, quando os ancestrais dos humanos modernos viajaram para o leste, eles se encontraram e se misturaram com pelo menos quatro outros grupos de humanos arcaicos.
 
"A ilha do Sudeste Asiático já era um lugar movimentado quando o que chamamos de humanos modernos chegou à região pouco antes de 50.000 anos atrás", disse Teixeira.
 
"Pelo menos três outros grupos humanos arcaicos parecem ter ocupado a área, e os ancestrais dos humanos modernos se misturaram a eles antes que os humanos arcaicos se tornassem extintos."
Em sua nova pesquisa, o Dr. Teixeira e seu colega, Alan Cooper , analisaram evidências genéticas, arqueológicas e fósseis, além de informações adicionais de rotas de migração reconstruídas e registros de vegetação fóssil.
 
Os cientistas descobriram que houve um evento de mistura na vizinhança do sul da Ásia entre humanos anatomicamente modernos e um grupo que eles denominaram Extinct Hominin 1 (EH1).
Outros cruzamentos ocorreram com os denisovanos na ilha do sudeste asiático e nas Filipinas e com outro grupo - chamado Extinct Hominin 2 (EH2) - em Flores, na Indonésia.
A rota inferida do movimento de humanos anatomicamente modernos pela Ilha do Sudeste Asiático há cerca de 50.000 anos (setas amarelas e vermelhas): as populações modernas de caçadores-coletores com dados genéticos são mostradas em vermelho e as populações agrícolas são mostradas em preto; o conteúdo genômico estimado de EH1 (roxo), Denisovan (vermelho), EH2 (marrom) e não-arcaico (cinza) nas populações modernas é mostrado em gráficos de pizza, como uma proporção relativa à observada em Australo-Papuans (círculos completos ); cinza todas as populações que contêm grandes quantidades de conteúdo genômico de Denisovan são encontradas a leste da Linha Wallace; eventos independentes de introgressão com grupos denisovanos são inferidos para o ancestral comum das populações de Australo-Papuan, Filipinas e ISEA (vermelho circulado 2) e, separadamente, para as Filipinas (vermelho circulado 4); o sinal para uma introgressão separada com um hominino desconhecido em Flores, registrado em dados genômicos de populações modernas, permanece menos seguro (com um círculo marrom 5); a localização precisa dos eventos de introgressão 2, 4 e 5 atualmente permanece desconhecida. Crédito da imagem: Teixeira & Cooper, doi: 10.1073 / pnas.1904824116.
A rota inferida do movimento de humanos anatomicamente modernos pela Ilha do Sudeste Asiático há cerca de 50.000 anos (setas amarelas e vermelhas): as populações modernas de caçadores-coletores com dados genéticos são mostradas em vermelho e as populações agrícolas são mostradas em preto; o conteúdo genômico estimado de EH1 (roxo), Denisovan (vermelho), EH2 (marrom) e não-arcaico (cinza) nas populações modernas é mostrado em gráficos de pizza, como uma proporção relativa à observada em Australo-Papuans (círculos completos ); cinza todas as populações que contêm grandes quantidades de conteúdo genômico denisovano são encontradas a leste da linha de Wallace; eventos independentes de introgressão com grupos denisovanos são inferidos para o ancestral comum das populações de Australo-Papuan, Filipinas e ISEA (vermelho circulado 2) e, separadamente, para as Filipinas (vermelho circulado 4); o sinal para uma introgressão separada com um hominino desconhecido em Flores, registrado em dados genômicos de populações modernas, permanece menos seguro (com um círculo marrom 5); a localização precisa dos eventos de introgressão 2, 4 e 5 atualmente permanece desconhecida. Crédito da imagem: Teixeira & Cooper, doi: 10.1073 / pnas.1904824116.
 
"Sabíamos que a história fora da África não era simples, mas parece ser muito mais complexa do que pensávamos", disse Teixeira.
 
"A região do Sudeste Asiático da ilha estava claramente ocupada por vários grupos humanos arcaicos, provavelmente vivendo em relativo isolamento um do outro por centenas de milhares de anos antes da chegada dos ancestrais dos humanos modernos".
 
"O momento também faz parecer que a chegada dos humanos modernos foi seguida rapidamente pelo desaparecimento dos grupos humanos arcaicos em cada área".
_____
João C. Teixeira e Alan Cooper. Usando introgressão de hominina para rastrear dispersões humanas modernas. PNAS , publicado on-line em 12 de julho de 2019; doi: 10.1073 / pnas.1904824116a

segunda-feira, 23 de setembro de 2019

Proteoma inicial do esmalte pleistoceno de Dmanisi resolve a filogenia de Stephanorhinus

Abstrato

O sequenciamento do DNA antigo permitiu a reconstrução de eventos de especiação, migração e mistura para táxons extintos1. No entanto, a degradação post-mortem irreversível2 do DNA antigo até agora limitou sua recuperação - fora das áreas de permafrost - a espécimes com menos de 0,5 milhão de anos (Myr) 3. 

Por outro lado, a espectrometria de massa em tandem permitiu o sequenciamento de aproximadamente 1,5 Myr de colágeno tipo I4 e sugeriu a presença de resíduos de proteínas em fósseis do período Cretáceo5 - embora com uso filogenético limitado6. 

Na ausência de evidências moleculares, a especiação de várias espécies extintas da época do Pleistoceno Precoce e Médio permanece controversa. Aqui, abordamos as relações filogenéticas dos rinocerotídeos da Eurásia do período Pleistoceno7,8,9, usando o proteoma do esmalte dental de um dente de Stephanorhinus com aproximadamente 1,77 Myr de idade, recuperado do sítio arqueológico de Dmanisi (sul do Cáucaso, Geórgia) 10) As análises filogenéticas moleculares colocam esse Stephanorhinus como um grupo irmão do clado formado pelo rinoceronte lanoso (Coelodonta antiquitatis) e pelo rinoceronte da Merck (Stephanorhinus kirchbergensis). Mostramos que Coelodonta evoluiu de uma linhagem primitiva de Stephanorhinus e que esse último gênero inclui pelo menos duas linhas evolutivas distintas. 

O gênero Stephanorhinus é, portanto, atualmente parafilético, sendo necessária sua revisão sistemática. Demonstramos que o sequenciamento do proteoma do esmalte dental do Pleistoceno Superior supera as limitações da inferência filogenética baseada no colágeno ou no DNA antigo. Nossa abordagem também fornece informações adicionais sobre o sexo e a atribuição taxonômica de outras amostras de Dmanisi. 

Nossas descobertas revelam que a investigação proteômica do esmalte dental antigo - que é o tecido mais duro dos vertebrados11 e é altamente abundante no registro fóssil - pode levar a reconstrução da evolução molecular ainda mais à época do Pleistoceno Precoce, além dos limites atualmente conhecidos da antiguidade. Preservação de DNA.

References

  1. 1.
    Cappellini, E. et al. Ancient biomolecules and evolutionary inference. Annu. Rev. Biochem. 87, 1029–1060 (2018).
  2. 2.
    Dabney, J., Meyer, M. & Pääbo, S. Ancient DNA damage. Cold Spring Harb. Perspect. Biol. 5, a012567 (2013).
  3. 3.
    Meyer, M. et al. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531, 504–507 (2016).
  4. 4.
    Wadsworth, C. & Buckley, M. Proteome degradation in fossils: investigating the longevity of protein survival in ancient bone. Rapid Commun. Mass Spectrom. 28, 605–615 (2014).
  5. 5.
    Schweitzer, M. H. et al. Analyses of soft tissue from Tyrannosaurus rex suggest the presence of protein. Science 316, 277–280 (2007).
  6. 6.
    Schroeter, E. R. et al. Expansion for the Brachylophosaurus canadensis collagen I sequence and additional evidence of the preservation of Cretaceous protein. J. Proteome Res. 16, 920–932 (2017).
  7. 7.
    Willerslev, E. et al. Analysis of complete mitochondrial genomes from extinct and extant rhinoceroses reveals lack of phylogenetic resolution. BMC Evol. Biol. 9, 95 (2009).
  8. 8.
    Welker, F. et al. Middle Pleistocene protein sequences from the rhinoceros genus Stephanorhinus and the phylogeny of extant and extinct Middle/Late Pleistocene Rhinocerotidae. PeerJ 5, e3033 (2017).
  9. 9.
    Kirillova, I. et al. Discovery of the skull of Stephanorhinus kirchbergensis (Jäger, 1839) above the Arctic Circle. Quat. Res. 88, 537–550 (2017).
  10. 10.
    Lordkipanidze, D. et al. A complete skull from Dmanisi, Georgia, and the evolutionary biology of early Homo. Science 342, 326–331 (2013).
  11. 11.
    Eastoe, J. E. Organic matrix of tooth enamel. Nature 187, 411–412 (1960).
  12. 12.
    Orlando, L. et al. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499, 74–78 (2013).
  13. 13.
    Demarchi, B. et al. Protein sequences bound to mineral surfaces persist into deep time. eLife 5, e17092 (2016).
  14. 14.
    Welker, F. et al. Ancient proteins resolve the evolutionary history of Darwin’s South American ungulates. Nature 522, 81–84 (2015).
  15. 15.
    Chen, F. et al. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature 569, 409–412 (2019).
  16. 16.
    Nei, M. Molecular Evolutionary Genetics Vol. 75, 39–63 (Columbia Univ. Press, 1987).
  17. 17.
    Buckley, M., Warwood, S., van Dongen, B., Kitchener, A. C. & Manning, P. L. A fossil protein chimera; difficulties in discriminating dinosaur peptide sequences from modern cross-contamination. Proc. R. Soc. Lond. B 284, 20170544 (2017).
  18. 18.
    Gabunia, L. et al. Earliest Pleistocene hominid cranial remains from Dmanisi, Republic of Georgia: taxonomy, geological setting, and age. Science 288, 1019–1025 (2000).
  19. 19.
    Ferring, R. et al. Earliest human occupations at Dmanisi (Georgian Caucasus) dated to 1.85–1.78 Ma. Proc. Natl Acad. Sci. USA 108, 10432–10436 (2011).
  20. 20.
    Castiblanco, G. A. et al. Identification of proteins from human permanent erupted enamel. Eur. J. Oral Sci. 123, 390–395 (2015).
  21. 21.
    Stewart, N. A. et al. The identification of peptides by nanoLC-MS/MS from human surface tooth enamel following a simple acid etch extraction. RSC Advances 6, 61673–61679 (2016).
  22. 22.
    van Doorn, N. L., Wilson, J., Hollund, H., Soressi, M. & Collins, M. J. Site-specific deamidation of glutamine: a new marker of bone collagen deterioration. Rapid Commun. Mass Spectrom. 26, 2319–2327 (2012).
  23. 23.
    Catak, S., Monard, G., Aviyente, V. & Ruiz-López, M. F. Computational study on nonenzymatic peptide bond cleavage at asparagine and aspartic acid. J. Phys. Chem. A 112, 8752–8761 (2008).
  24. 24.
    Hunter, T. Why nature chose phosphate to modify proteins. Phil. Trans. R. Soc. Lond. B 367, 2513–2516 (2012).
  25. 25.
    Hu, J. C. C., Yamakoshi, Y., Yamakoshi, F., Krebsbach, P. H. & Simmer, J. P. Proteomics and genetics of dental enamel. Cells Tissues Organs 181, 219–231 (2005).
  26. 26.
    Tagliabracci, V. S. et al. Secreted kinase phosphorylates extracellular proteins that regulate biomineralization. Science 336, 1150–1153 (2012).
  27. 27.
    Cleland, T. P. Solid digestion of demineralized bone as a method to access potentially insoluble proteins and post-translational modifications. J. Proteome Res. 17, 536–542 (2018).
  28. 28.
    Antoine, P.-O. et al. A revision of Aceratherium blanfordi Lydekker, 1884 (Mammalia: Rhinocerotidae) from the Early Miocene of Pakistan: postcranials as a key. Zool. J. Linn. Soc. 160, 139–194 (2010).
  29. 29.
    Steiner, C. C. & Ryder, O. A. Molecular phylogeny and evolution of the Perissodactyla. Zool. J. Linn. Soc. 163, 1289–1303 (2011).
  30. 30.
    Hobolth, A., Dutheil, J. Y., Hawks, J., Schierup, M. H. & Mailund, T. Incomplete lineage sorting patterns among human, chimpanzee, and orangutan suggest recent orangutan speciation and widespread selection. Genome Res. 21, 349–356 (2011).
  31. 31.
    Rieseberg, L. H. Evolution: replacing genes and traits through hybridization. Curr. Biol. 19, R119–R122 (2009).
  32. 32.
    Guérin, C. Les Rhinocéros (Mammalia, Perissodactyla) du Miocène Terminal au Pleistocène Supérieur en Europe occidentale, Comparaison avec les Espèces Actuelles (Documents du Laboratoire de Geologie de la Faculte des Sciences de Lyon, volume 79) (Univ. Claude-Bernard, 1980).
  33. 33.
    Deng, T. et al. Out of Tibet: Pliocene woolly rhino suggests high-plateau origin of Ice Age megaherbivores. Science 333, 1285–1288 (2011).
  34. 34.
    Orlando, L. et al. Ancient DNA analysis reveals woolly rhino evolutionary relationships. Mol. Phylogenet. Evol. 28, 485–499 (2003).
  35. 35.
    Yuan, J. et al. Ancient DNA sequences from Coelodonta antiquitatis in China reveal its divergence and phylogeny. Sci. China Earth Sci. 57, 388–396 (2014).
  36. 36.
    Penkman, K. E. H., Kaufman, D. S., Maddy, D. & Collins, M. J. Closed-system behaviour of the intra-crystalline fraction of amino acids in mollusc shells. Quat. Geochronol. 3, 2–25 (2008).
  37. 37.
    Hendy, J. et al. A guide to ancient protein studies. Nat. Ecol. Evol. 2, 791–799 (2018).
  38. 38.
    Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009).
  39. 39.
    Cappellini, E. et al. Resolution of the type material of the Asian elephant, Elephas maximus Linnaeus, 1758 (Proboscidea, Elephantidae). Zool. J. Linn. Soc. 170, 222–232 (2014).
  40. 40.
    Kulak, N. A., Pichler, G., Paron, I., Nagaraj, N. & Mann, M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat. Methods 11, 319–324 (2014).
  41. 41.
    Mackie, M. et al. Palaeoproteomic profiling of conservation layers on a 14th century Italian wall painting. Angew. Chem. Int. Edn 57, 7369–7374 (2018).
  42. 42.
    Cappellini, E. et al. Proteomic analysis of a Pleistocene mammoth femur reveals more than one hundred ancient bone proteins. J. Proteome Res. 11, 917–926 (2012).
  43. 43.
    Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
  44. 44.
    Zhang, J. et al. PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Mol. Cell. Proteomics 11, M111.010587 (2012).
  45. 45.
    The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169 (2017).
  46. 46.
    O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).
  47. 47.
    Welker, F. et al. Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne. Proc. Natl Acad. Sci. USA 113, 11162–11167 (2016).
  48. 48.
    Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
  49. 49.
    Gabriels, R., Martens, L. & Degroeve, S. Updated MS2PIP web server delivers fast and accurate MS2 peak intensity prediction for multiple fragmentation methods, instruments and labeling techniques. Nucleic Acids Res. 47, W295–W299 (2019).
  50. 50.
    Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protocols 11, 2301–2319 (2016).
  51. 51.
    Colaert, N., Helsens, K., Martens, L., Vandekerckhove, J. & Gevaert, K. Improved visualization of protein consensus sequences by iceLogo. Nat. Methods 6, 786–787 (2009).
  52. 52.
    Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics 15, 356 (2014).
  53. 53.
    Briggs, A. W. et al. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res. 38, e87 (2010).
  54. 54.
    Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).
  55. 55.
    Sea Urchin Genome Sequencing Consortium. The genome of the sea urchin Strongylocentrotus purpuratus. Science 314, 941–952 (2006).
  56. 56.
    Katoh, K. & Frith, M. C. Adding unaligned sequences into an existing alignment using MAFFT and LAST. Bioinformatics 28, 3144–3146 (2012).
  57. 57.
    Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).
  58. 58.
    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
  59. 59.
    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
  60. 60.
    Rohland, N. & Hofreiter, M. Comparison and optimization of ancient DNA extraction. Biotechniques 42, 343–352 (2007).
  61. 61.
    Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448 (2010).
  62. 62.
    Schubert, M. et al. Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX. Nat. Protocols 9, 1056–1082 (2014).
  63. 63.
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
  64. 64.
    Dickinson, M. R., Lister, A. M. & Penkman, K. E. H. A new method for enamel amino acid racemization dating: a closed system approach. Quat. Geochronol. 50, 29–46 (2019).