Na próxima semana, um pequeno barco de listras amarelas e brancas sairá do porto em Kalamata, na Grécia, e partirá da costa. O navio não carrega um capitão ou tripulação, apenas uma série de componentes eletrônicos que lhe dirá para onde ir e quando soltar a cápsula em formato de torpedo que está na popa. Uma vez liberado, o veículo equipado com sonar descerá vários quilômetros até o abismo gelado da Trincheira Helênica, a parte mais profunda do Mar Mediterrâneo, e mapeará o fundo do mar com pulsos de som. A equipe por trás do esforço é a primeira das oito competidoras nos próximos meses na final do US $ 7 milhões do Shell Ocean Discovery XPRIZE. "Não tenho certeza se estamos loucos ou não, mas decidimos ir primeiro", diz Rochelle Wigley, geóloga marinha da Universidade de New Hampshire, em Durham, que lidera a equipe XPRIZE da Fundação Nippon japonesa e do General Carta batimétrica dos oceanos (GEBCO), uma organização internacional.
A XPRIZE, uma organização sem fins lucrativos com sede em Culver City, Califórnia, realiza competições para estimular a inovação e, em 2015, voltou-se para o problema de mapear o fundo do oceano, diz a diretora do concurso, Jyotika Virmani. O catalisador foi o desaparecimento do Vôo 370 da Malaysia Airlines em algum lugar sobre o Oceano Índico, e a completa percepção de que as equipes de recuperação sabiam pouco sobre o que estava abaixo da superfície da área de busca. "Em vez do avião, infelizmente, eles encontraram dois novos vulcões, um dos quais é maior que o Vesúvio", diz ela.
Sharper pictures of the ocean floor could help companies look for
resources such as oil. (The energy company Shell is the prize’s
sponsor.) But researchers want a clearer view, too. For example, Dave
Clague, a geologist at the Monterey Bay Aquarium Research Institute in
Moss Landing, California, studies volcanic activity along midocean
ridges—submarine mountain chains that generate new ocean crust—by
identifying lava flows. But scientists have fine-scale maps for only a
tiny fraction of the 65,000-kilometer-long system, limiting their
understanding of how new crust forms and what happens to it as it moves
away from the ridge.
Biologists also need better maps, to manage fisheries and identify
deep-sea habitats. They have already discovered new colonies of
cold-water corals just by looking for structures rising from the sea
floor, says Craig Brown, a mapping expert at Nova Scotia Community
College in Halifax, Canada. “They usually have quite dramatic
topography,” he says.
So far, just 9% of the seafloor has been mapped in detail with modern
sonar technology, Wigley says, and only 18% of the world’s ocean bottom
has been surveyed at all, often at resolution so coarse that jumbo
jets—and volcanoes—would have no trouble hiding. The rest—four-fifths of
the two-thirds of the planet covered by water—is virtually unknown. As
usual, the limitations are money and time. The research vessels that do
high-resolution mapping cost up to $100,000 a day to operate. And they
move so slowly that it would take centuries for them to chart the
world’s oceans, Virmani says.
Corrida para o fundo
Team Name | Country | Surface Ops | Number of AUVs |
---|---|---|---|
Arggonauts | Germany | Five ships | Five |
Blue Devil Ocean Engineering | United States | Two aerial drones | Two |
CFIS | Switzerland | None | 20 |
GEBCO-Nippon Foundation alumni | International | One ship | One |
Kuroshio | Japan | One ship | Two |
PISCES | Portugal | One ship, two acoustic beacons | One |
Team Tao | United Kingdom | One ship | Five |
Texas A&M | United States | One ship | One |
(DATA) XPRIZE teams
Os satélites também podem mapear o fundo do mar, medindo pequenas variações na superfície oceânica causadas pela atração gravitacional de características maciças do fundo do mar. Mas a resolução é grosseira. Nos últimos anos, os pesquisadores se voltaram para veículos subaquáticos autônomos (AUVs). Eles seguem caminhos pré-programados usando sistemas de navegação inercial que rastreiam precisamente sua velocidade e direção, e transportam sonares de vários feixes em miniatura. Ao cruzar perto do fundo do oceano, eles podem detectar contornos no fundo do mar menores que um metro - uma grande melhora em relação à resolução de 50 metros de um sistema típico baseado em navios que trabalha no fundo do oceano, diz Clague, que não está envolvido. o concurso XPRIZE. Mas os AUVs ainda são lentos. Esforços para adicionar baterias e aumentar o tempo de mergulho apenas aumentam o AUV, exigindo navios maiores para lançá-los, “o que acaba com o objetivo”, diz Clague.
XPRIZE hopes its competition will spark faster, cheaper autonomous
systems. Starting from shore, the eight finalists must map between 250
and 500 square kilometers in 24 hours, at depths down to 4000 meters and
resolutions of 5 meters or better. They must also carry instruments to
collect images of 10 interesting features and find a trophy stashed on
the sea floor. The technical challenges include building instruments to
withstand enormous pressure, balancing battery life against speed, and
making the robots smart enough to carry out the whole operation without
human guidance. “Everything is hard,” says Martin Brooke, an engineer at
Duke University in Durham, North Carolina, and leader of its XPRIZE
team.
Brooke’s group—mostly engineering students—will try to gain time by
using heavy-lift aerial drones to carry buoys that will lower tethered
mapping pods into the ocean. Most teams use an autonomous surface vessel
to save their AUV’s precious power and to serve as a communication hub.
The Swiss CFIS team, led by Toby Jackson, a financial
trader–turned–inventor, will send 20 lightweight, 3D-printed AUVs
directly from shore. Instead of sonar, they will use lasers, which can
bounce light off the sea floor because they are at such close range.
Team Tao will also use a swarm approach, launching five custom-built
AUVs from an autonomous catamaran it calls the “vending machine.”
Eventually, the system will carry two dozen subsea drones, says team
leader Hua Khee Chan, an engineer at Newcastle University in the United
Kingdom, allowing half to work while the others charge. Each AUV will
follow a simple vertical path, enabling it to sample the temperature and
salinity of the water column as it descends. Chan says it’s “extra data
that we get for free while it’s traveling.” Both Chan and Jackson say
they aim to produce their AUVs for less than $25,000 a pop—a bargain
compared with the sophisticated models used today, which can cost $1
million or more.
Cheaper, more flexible systems could help researchers rapidly fill
the gaps in seafloor maps—and enable repeat surveys to monitor changes
over time. Clague would like to measure how much lava is produced during
a single eruption on a midocean ridge, which gives clues about magma
generation in the mantle. Repeat mapping could also track movement along
offshore faults that generate earthquakes, and in seafloor sediments
after major weather events.
As XPRIZE’s sponsor, Shell reserves first rights to negotiate with
each team for use of its technology, which it could use for oil and gas
exploration or to monitor production wells and pipelines. Companies
hoping to mine the seafloor for minerals are also eager to get a better
look. But Wigley says mapping could also aid in marine protection. “If
we understand the seafloor better, we can manage where it’s happening
better and understand the impacts better.”
For now, that’s a long way off, and most teams are just scrambling to
prepare for the competition in Greece. A Portuguese team still hasn’t
tested its acoustic positioning system, which relies on a constellation
of floating beacons, in deep water. “From the math, it should work,”
says team leader Nuno Cruz, an engineer at the University of Porto in
Portugal. “But you go into the ocean and things are not like math.” Some
teams already know they won’t win, but they are fine with that. Most
entered for the challenge, not the purse, and XPRIZE is pleased with the
progress they’ve made, Virmani says. “We’ve already shifted the field.”
*Correction, 31 October, 4 p.m.: An earlier version of the story misstated the resolution and coverage rate of typical AUVs.
doi:10.1126/science.aav9034
Nenhum comentário:
Postar um comentário
Observação: somente um membro deste blog pode postar um comentário.