Evidências genômicas e fósseis integradas iluminam a evolução inicial da vida e a origem eucariota
Abstract
Estabelecer
um cronograma unificado para a evolução inicial da Terra e da vida é
desafiador e atolado em controvérsias por causa da escassez de
evidências fósseis, da dificuldade de interpretá-las e da disputa sobre
as mais profundas relações de ramificação na árvore da vida.
Surpreendentemente, esse talvez seja o único episódio da história da vida em que interpretações literais do registro fóssil prevalecem, revisadas a cada nova descoberta e reinterpretação.
Nós derivamos uma escala de tempo de vida, combinando uma reavaliação do material fóssil com novas análises de relógio molecular. Encontramos o último ancestral comum universal da vida celular a ter precedido o fim do bombardeio pesado tardio (> 3,9 bilhões de anos atrás (Ga)).
Os clados de coroa das duas divisões primárias da vida, Eubacteria e Archaebacteria, surgiram muito mais tarde (.
O Grande Evento de Oxidação é significativamente anterior à origem das Cianobactérias modernas, indicando que a fotossíntese oxigênica evoluiu dentro da linhagem de caules de cianobactérias.
Os eucariotos modernos não constituem uma linhagem primária da vida e emergiram tarde na história da Terra (Alphaproteobacteria ao qual pertenceu o ancestral vivo da mitocôndria.
Surpreendentemente, esse talvez seja o único episódio da história da vida em que interpretações literais do registro fóssil prevalecem, revisadas a cada nova descoberta e reinterpretação.
Nós derivamos uma escala de tempo de vida, combinando uma reavaliação do material fóssil com novas análises de relógio molecular. Encontramos o último ancestral comum universal da vida celular a ter precedido o fim do bombardeio pesado tardio (> 3,9 bilhões de anos atrás (Ga)).
Os clados de coroa das duas divisões primárias da vida, Eubacteria e Archaebacteria, surgiram muito mais tarde (.
O Grande Evento de Oxidação é significativamente anterior à origem das Cianobactérias modernas, indicando que a fotossíntese oxigênica evoluiu dentro da linhagem de caules de cianobactérias.
Os eucariotos modernos não constituem uma linhagem primária da vida e emergiram tarde na história da Terra (Alphaproteobacteria ao qual pertenceu o ancestral vivo da mitocôndria.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
- 1.Dos Reis, M., Donoghue, P. C. J. & Yang, Z. Bayesian molecular clock dating of species divergences in the genomics era. Nat. Rev. Genet. 17, 71–80 (2016).
Wacey, D. Early Life on Earth: a Practical Guide Vol. 31 (Springer, New York, 2009).
Inoue,
J., Donoghue, P. C. J. & Yang, Z. The impact of the representation
of fossil calibrations on Bayesian estimation of species divergence
times. Syst. Biol. 59, 74–89 (2009).
Parham, J. F. et al. Best practices for justifying fossil calibrations. Syst. Biol. 61, 346–359 (2012).
Warnock,
R. C. M., Parham, J. F., Joyce, W. G., Lyson, T. R. & Donoghue, P.
C. J. Calibration uncertainty in molecular dating analyses: there is no
substitute for the prior evaluation of time priors. Proc. R. Soc. B 282, 20141013 (2014).
Davín, A. A. et al. Gene transfers can date the tree of life. Nat. Ecol. Evol. 2, 904–909 (2018).
Lozano-Fernandez,
J., dos Reis, M., Donoghue, P. C. J. & Pisani, D. RelTime rates
collapse to a strict clock when estimating the timeline of animal
diversification. Genome Biol. Evol. 9, 1320–1328 (2017).
Pisani, D. & Liu, A. G. Animal evolution: only rocks can set the clock. Curr. Biol. 25, R1079–R1081 (2015).
Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015).
Williams,
T. A., Foster, P. G., Cox, C. J. & Embley, T. M. An archaeal origin
of eukaryotes supports only two primary domains of life. Nature 504, 231–236 (2013).
Dodd, M. S. et al. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543, 60–64 (2017).
Pflug, H. D. & Jaeschke-Boyer, H. Combined structural and chemical analysis of 3,800-Myr-old microfossils. Nature 280, 483–486 (1979).
Nutman,
A. P., Bennett, V. C., Friend, C. R. L., Van Kranendonk, M. J. &
Chivas, A. R. Rapid emergence of life shown by discovery of
3,700-million-year-old microbial structures. Nature 537, 535–538 (2016).
Rosing, M. T. 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland. Science 283, 674–676 (1999).
Mojzsis, S. J.et al. Evidence for life on Earth before 3,800 million years ago. Nature 384, 55–59 1996).
Van Zuilen, M. A., Lepland, A. & Arrhenius, G. Reassessing the evidence for the earliest traces of life. Nature 418, 627–630 (2002).
Horita, J. & Berndt, M. E. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285, 1055–1057 (1999).
Lepland,
A., Arrhenius, G. & Cornell, D. Apatite in early Archean Isua
supracrustal rocks, southern West Greenland: its origin, association
with graphite and potential as a biomarker. Precambrian Res. 118, 221–241 (2002).
Sugitani,
K. et al. Early evolution of large micro‐organisms with cytological
complexity revealed by microanalyses of 3.4 Ga organic‐walled
microfossils. Geobiology 13, 507–521 (2015).
Sugitani,
K. et al. Biogenicity of morphologically diverse carbonaceous
microstructures from the ca. 3400 Ma Strelley Pool Formation, in the
Pilbara Craton, Western Australia. Astrobiology 10, 899–920 (2010).
Sugitani,
K., Mimura, K., Nagaoka, T., Lepot, K. & Takeuchi, M. Microfossil
assemblage from the 3400 Ma Strelley Pool Formation in the Pilbara
Craton, Western Australia: results form a new locality. Precambrian Res. 226, 59–74 2013).
Wacey,
D., Kilburn, M. R., Saunders, M., Cliff, J. & Brasier, M. D.
Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks
of Western Australia. Nat. Geosci. 4, 698–702 (2011).
Lepot,
K. et al. Texture-specific isotopic compositions in 3.4 Gyr old organic
matter support selective preservation in cell-like structures. Geochim. Cosmochim. Acta 112, 66–86 (2013).
Wacey, D., McLoughlin, N., Whitehouse, M. J. & Kilburn, M. R. Two coexisting sulfur metabolisms in a ca. 3400 Ma sandstone. Geology 38, 1115–1118 (2010).
Wacey,
D. Stromatolites in the ~3400 Ma Strelley Pool Formation, Western
Australia: examining biogenicity from the macro-to the nano-scale. Astrobiology 10, 381–395 (2010).
Abramov, O. & Mojzsis, S. J. Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature 459, 419–422 (2009).
Butterfield, N. J. Bangiomorpha pubescens
n. gen., n. sp.: implications for the evolution of sex,
multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of
eukaryotes. Paleobiology 26, 386–404 (2000).
Sánchez-Baracaldo,
P., Raven, J. A., Pisani, D. & Knoll, A. H. Early photosynthetic
eukaryotes inhabited low-salinity habitats. Proc. Natl Acad. Sci. USA 114, E7737–E7745 (2017).
Bengston,
S. et al. Three-dimensional preservation of cellular and subcellular
structures suggests 1.6 billion-year-old crown-group red algae. PLoS Biol. 15, e2000735 (2017).
Lamb, D. M., Awramik, S. M., Chapman, D. J. & Zhu, S. Evidence for eukaryotic diversification in the ∼1800 million-year-old Changzhougou Formation, North China. Precambrian Res. 173, 93–104 (2009).
Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).
Warnock, R. C. M., Yang, Z. & Donoghue, P. C. J. Exploring uncertainty in the calibration of the molecular clock. Biol. Lett. 8, 156–159 (2012).
Lanfear,
R., Calcott, B., Ho, S. Y. W. & Guindon, S. PartitionFinder:
combined selection of partitioning schemes and substitution models for
phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701 (2012).
Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA 74, 5088–5090 (1977).
Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006).
Chapman,
C. R., Cohen, B. A. & Grinspoon, D. H. What are the real
constraints on the existence and magnitude of the late heavy
bombardment? Icarus 189, 233–245 (2007).
Hayes, J. M. in Early life on Earth Vol. 84, 220–236 (Columbia University Press, New York, 1994).
Ueno,
Y., Yamada, K., Yoshida, N., Maruyama, S. & Isozaki, Y. Evidence
from fluid inclusions for microbial methanogenesis in the early Archaean
era. Nature 440, 516–519 (2006).
Wolfe, J. & Fournier, G. P. Horizontal gene transfer constrains the timing of methanogen evolution. Nat. Ecol. Evol. 2, 897–903 (2018).
Evans, P. N. et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350, 434–438 (2015).
Vanwonterghem, I. et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat. Microbiol. 1, 16170 (2016).
Williams, T. A. et al. Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proc. Natl Acad. Sci. USA 114, 4602–4611 (2017).
Weiss, M. C. et al. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1, 16116 (2016).
Sousa, F. L., Nelson-Sathi, S. & Martin, W. F. One step beyond a ribosome: the ancient anaerobic core. Biochim. Biophys. Acta 1857, 1027–1038 (2016).
Borrel,
G., Adam, P. S. & Gribaldo, S. Methanogenesis and the
Wood–Ljungdahl pathway: an ancient, versatile, and fragile association. Genome Biol. Evol. 8, 1706–1711 (2016).
Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).
Schirrmeister,
B. E., de Vos, J. M., Antonelli, A. & Bagheri, H. C. Evolution of
multicellularity coincided with increased diversification of
cyanobacteria and the Great Oxidation Event. Proc. Natl Acad. Sci. USA 110, 1791–1796 (2013).
Knoll, A. H. & Nowak, M. A. The timetable of evolution. Sci. Adv. 3, e1603076 (2017).
Shih,
P. M., Hemp, J., Ward, L. M., Matzke, N. J. & Fischer, W. W. Crown
group Oxyphotobacteria postdate the rise of oxygen. Geobiology 15, 19–29 (2017).
Kurland, C. G., Collins, L. J. & Penny, D. Genomics and the irreducible nature of eukaryote cells. Science 312, 1011–1014 (2006).
Chernikova,
D., Motamedi, S., Csürös, M., Koonin, E. V. & Rogozin, I. B. A late
origin of the extant eukaryotic diversity: divergence time estimates
using rare genomic changes. Biol. Direct 6, 26 (2011).
Eme,
L., Sharpe, S. C., Brown, M. W. & Roger, A. J. On the age of
eukaryotes: evaluating evidence from fossils and molecular clocks. CSH Perspect. Biol. 6, a016139 (2014).
Parfrey,
L. W., Lahr, D. J. G., Knoll, A. H. & Katz, L. A. Estimating the
timing of early eukaryotic diversification with multigene molecular
clocks. Proc. Natl Acad. Sci. USA 108, 13624–13629 (2011).
Shih,
P. M. & Matzke, N. J. Primary endosymbiosis events date to the
later Proterozoic with cross-calibrated phylogenetic dating of
duplicated ATPase proteins. Proc. Natl Acad. Sci. USA 110, 12355–12360 (2013).
McInerney, J. O., O’Connell, M. J. & Pisani, D. The hybrid nature of the Eukaryota and a consilient view of life on Earth. Nat. Rev. Microbiol. 12, 449–455 (2014).
Roger, A. J., Muñoz-Gómez, S. A. & Kamikawa, R. The origin and diversification of mitochondria. Curr. Biol. 27, R1177–R1192 (2017).
Pittis, A. A. & Gabaldón, T. Late acquisition of mitochondria by a host with chimeric prokaryotic ancestry. Nature 531, 101–104 (2016).
Martin, W. F. et al. Late mitochondrial origin is an artifact. Genome Biol. Evol. 9, 373–379 (2017).
Pisani, D., Cotton, J. A. & McInerney, J. O. Supertrees disentangle the chimerical origin of eukaryotic genomes. Mol. Biol. Evol. 24, 1752–1760 (2007).
Ku, C. et al. Endosymbiotic origin and differential loss of eukaryotic genes. Nature 524, 427–432 (2015).
Lane, N. & Martin, W. The energetics of genome complexity. Nature 467, 929–934 (2010).
Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, D36–D42 (2013).
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
Capella-Gutiérrez,
S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for
automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
Lartillot,
N., Lepage, T. & Blanquart, S. PhyloBayes 3: a Bayesian software
package for phylogenetic reconstruction and molecular dating. Bioinformatics 25, 2286–2288 (2009).
Kück, P. & Meusemann, K. FASconCAT: convenient handling of data matrices. Mol. Phylogenet. Evol. 56, 1115–1118 (2010).
Lartillot,
N. & Philippe, H. A Bayesian mixture model for across-site
heterogeneities in the amino-acid replacement process. Mol. Biol. Evol. 21, 1095–1109 (2004).
Aberer,
A. J., Krompass, D. & Stamatakis, A. Pruning rogue taxa improves
phylogenetic accuracy: an efficient algorithm and webservice. Syst. Biol. 62, 162–166 (2013).
Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).
R Core Development Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).
Butterfield, N. J., Knoll, A. H. & Swett, K. A bangiophyte red alga from the Proterozoic of arctic Canada. Science 250, 104–108 (1990).
Rambaut,
A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior
summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. https://doi.org/10.1093/sysbio/syy032 (2018).
Martijn,
J., Vosseberg, J., Guy, L., Offre, P. & Ettema, T. J. G. Deep
mitochondrial origin outside the sampled alphaproteobacteria. Nature 557, 101–105 (2018).
Esser,
C. et al. A genome phylogeny for mitochondria among
alpha-proteobacteria and a predominantly eubacterial ancestry of yeast
nuclear genes. Mol. Biol. Evol. 21, 1643–1660 (2004).
Fitzpatrick,
D. A., Creevey, C. J. & McInerney, J. O. Genome phylogenies
indicate a meaningful α-proteobacterial phylogeny and support a grouping
of the mitochondria with the Rickettsiales. Mol. Biol. Evol. 23, 74–85 (2006).
Acknowledgements
H.C.B.
was supported by a NERC GW4 PhD studentship. J.W.C. was supported by a
BBSRC SWBio PhD studentship. M.N.P. was supported by an 1851 Royal
Commission Fellowship. P.C.J.D. was supported by BBSRC grant
BB/N000919/1. T.A.W. is supported by a Royal Society Fellowship and NERC
grant NE/P00251X/1.
Author information
Affiliations
School of Earth Sciences, University of Bristol, Bristol, UK
- Holly C. Betts
- , Mark N. Puttick
- , James W. Clark
- , Tom A. Williams
- , Philip C. J. Donoghue
- & Davide Pisani
Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
- Mark N. Puttick
School of Biological Sciences, University of Bristol, Bristol, UK
- Tom A. Williams
- & Davide Pisani
Contributions
D.P., P.C.J.D. and T.A.W. designed the study. H.C.B. assembled the datasets and performed the phylogenetic and molecular clock analyses. M.N.P. and J.W.C. contributed further molecular clock analyses. H.C.B., D.P., P.C.J.D. and T.A.W. wrote the manuscript. All authors edited the manuscript and approved the final version.Competing interests
The authors declare no competing interests.Corresponding author
Correspondence to Davide Pisani.Supplementary information
Supplementary Information
Supplementary information, figures and tablesReporting Summary
Rights and permissions
To obtain permission to re-use content from this article visit RightsLink.
Nenhum comentário:
Postar um comentário
Observação: somente um membro deste blog pode postar um comentário.