Homo sapiens in Arabia by 85,000 years ago
Abstract
Compreender
o tempo e o caráter da expansão do Homo sapiens para fora da África é
fundamental para inferir os processos de colonização e mistura que
sustentam a história da população mundial. Argumentou-se que a dispersão
fora da África teve uma fase inicial, particularmente ~ 130-90 mil anos
atrás (ka), que atingiu apenas o Oriente Mediterrâneo, e uma fase
posterior, ~ 60-50 ka, que se estendeu através dos diversos ambientes da
Eurásia para Sahul. No entanto, descobertas recentes do Leste Asiático e
Sahul desafiam este modelo.
Aqui mostramos que o H. sapiens estava na Península Arábica antes de 85 ka. Descrevemos a falange intermediária Al Wusta-1 (AW-1) do local de Al Wusta no deserto de Nefud, na Arábia Saudita. AW-1 é o mais antigo fóssil datado de nossa espécie fora da África e do Levante. O contexto paleoambiental de Al Wusta demonstra que o H. sapiens usando ferramentas de pedra do Paleolítico Médio dispersou-se na Arábia durante uma fase de aumento de precipitação impulsionada pelo forçamento orbital, em associação com uma fauna primariamente africana.
Um modelo bayesiano que incorpora estimativas de idade cronológica independentes indica uma cronologia para Al Wusta de ~ 95-86 ka, a qual correlacionamos com um episódio úmido na última parte do Estágio 5 do Isótopo Marinho, conhecido de vários registros regionais. Al Wusta mostra que as primeiras dispersões eram mais extensas espacial e temporalmente do que se pensava anteriormente. As primeiras dispersões de H. sapiens fora da África não se limitaram a florestas mediterrâneas do Mediterrâneo, alimentadas por chuvas de inverno, imediatamente adjacentes à África, mas estendidas profundamente nas pastagens semi-áridas da Arábia, facilitadas por períodos de chuvas de monções aumentadas.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
Aqui mostramos que o H. sapiens estava na Península Arábica antes de 85 ka. Descrevemos a falange intermediária Al Wusta-1 (AW-1) do local de Al Wusta no deserto de Nefud, na Arábia Saudita. AW-1 é o mais antigo fóssil datado de nossa espécie fora da África e do Levante. O contexto paleoambiental de Al Wusta demonstra que o H. sapiens usando ferramentas de pedra do Paleolítico Médio dispersou-se na Arábia durante uma fase de aumento de precipitação impulsionada pelo forçamento orbital, em associação com uma fauna primariamente africana.
Um modelo bayesiano que incorpora estimativas de idade cronológica independentes indica uma cronologia para Al Wusta de ~ 95-86 ka, a qual correlacionamos com um episódio úmido na última parte do Estágio 5 do Isótopo Marinho, conhecido de vários registros regionais. Al Wusta mostra que as primeiras dispersões eram mais extensas espacial e temporalmente do que se pensava anteriormente. As primeiras dispersões de H. sapiens fora da África não se limitaram a florestas mediterrâneas do Mediterrâneo, alimentadas por chuvas de inverno, imediatamente adjacentes à África, mas estendidas profundamente nas pastagens semi-áridas da Arábia, facilitadas por períodos de chuvas de monções aumentadas.
References
- 1.Stringer, C. The origin and evolution of Homo sapiens. Phil. Trans. R. Soc. B 371, 20150237 (2016).
Hershvokitz, I. et al. The earliest modern humans outside Africa. Science 359, 456–459 (2018).
Grün, R. et al. U-series and ESR analyses of bones and teeth relating to the human burials from Skhul. J. Hum. Evol. 49, 316–334 (2005).
Groucutt, H. S. et al. Rethinking the dispersal of Homo sapiens out of Africa. Evol. Anthropol. 24, 149–164 (2015).
Petraglia, M. D. et al. Middle Paleolithic assemblages from the Indian subcontinent before and after the Toba super-eruption. Science 317, 114–116 (2007).
Bae, C. J. & Douka, K. & Petraglia, M. D. On the origin of modern humans: Asian perspectives. Science
358, eaai9067 (2017).
Mellars,
P., Gori, K. C., Carr, M., Soares, P. A. & Richards, M. B. Genetic
and archaeological perspectives on the initial modern human colonization
of southern Asia. Proc. Natl Acad. Sci. USA 110, 10699–10704 (2013).
Shea, J. J. Transitions or turnovers? Climatically-forced extinctions of Homo sapiens and Neanderthals in the east Mediterranean Levant. Quatern. Sci. Rev. 27, 2253–2270 (2008).
Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016).
Pagani, L. et al. Genomic analyses inform on migration events during the peopling of Eurasia. Nature 538, 238–242 (2016).
Groucutt, H. S. et al. Stone tool assemblages and models for the dispersal of Homo sapiens out of Africa. Quatern. Int. 382, 8–30 (2015).
Demeter, F. et al. Early modern humans from Tam Pà Ling, Laos: fossil review and perspectives. Curr. Anthropol. 57, S17 (2017).
Westaway, K. E. et al. An early modern human presence in Sumatra 73,000–63,000 years ago. Nature 548, 322–325 (2017).
Michel, V. et al. The earliest modern Homo sapiens in China? J. Hum. Evol. 101, 101–104 (2016).
Liu, W. et al. The early unequivocally modern humans in southern China? Nature 526, 696–699 (2015).
Bae, C. et al. Modern human teeth from Late Pleistocene Luna Cave (Guangxi, China). Quatern. Int. 354, 169–183 (2015).
Liu, W. et al. Human remains from Zhiredong, South China, and modern human emergence in East Asia. Proc. Natl Acad. Sci. USA 107, 19201–19206 (2010).
Clarkson, C. et al. Human occupation of northern Australia by 65,000 years ago. Nature 547, 306–310 (2017).
Martinón-Torres, M., Wu, X., de Castro, J. M. B., Xing, S. & Liu, W. Homo sapiens in the eastern Asian Late Pleistocene. Curr. Anthropol. 58, S17 (2017).
Groucutt, H. S. & Petraglia, M. D. The prehistory of Arabia: deserts, dispersals and demography. Evol. Anthropol. 21, 113–125 (2012).
Petraglia,
M. D., Groucutt, H. S., Parton, A. & Alsharekh, A. Green Arabia:
human prehistory at the cross-roads of continents. Quatern. Int. 382, 1–7 (2015).
Jennings,
R. P. et al. The greening of Arabia: multiple opportunities for human
occupation in the Arabian Peninsula during the Late Pleistocene inferred
from an ensemble of climate model simulations. Quatern. Int. 205, 181–199 (2015).
Rosenberg,
T. M. et al. Middle and Late Pleistocene humid periods recorded in
palaeolake deposits in the Nafud desert, Saudi Arabia. Quatern. Sci. Rev. 70, 109–123 (2013).
Breeze, P. S. et al. Palaeohydrological corridors for hominin dispersals in the Middle East ~250–70,000 years ago. Quatern. Sci. Rev. 11, 155–185 (2016).
Scerri, E. M. L., Drake, N. A., Jennings, R. & Groucutt, H. S. Earliest evidence for the structure of Homo sapiens populations in Africa. Quatern. Sci. Rev. 101, 207–216 (2014).
Trinkaus, E. The Shanidar Neandertals (Academic, New York, 1981).
McCown, T. D. & Keith, A. The Stone Age of Mount Carmel Vol. 2 (Clarendon Press, Oxford, 1939).
Vandermeersch, B. Les Hommes Fossiles de Qafzeh (Israel) (CNRS, Paris, 1981).
Walker,
M. J., Ortega, J., López, M. V., Parmová, K. & Trinkaus, E.
Neanderthal postcranial remains from the Sima de las Palomas del Cabezo
Gordo, Murcia, southeastern Spain. Am. J. Phys. Anthropol. 144, 505–515 (2011).
Benjamin,
M. et al. Where tendons and ligaments meet bone: attachment sites
(‘entheses’) in relation to exercise and/or mechanical load. J. Anat. 208, 471–490 (2006).
Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).
Drake,
N. A., Breeze, P. & Parker, A. Palaeoclimate in the Saharan and
Arabian deserts during the Middle Palaeolithic and the potential for
hominin dispersals. Quatern. Int. 300, 48–61 (2013).
Parton, A. et al. Orbital-scale climate variability in Arabia as a potential motor for human dispersals. Quatern. Int. 382, 82–97 (2015).
Vaks,
A., Bar-Matthews, M., Matthews, A., Ayalon, A. & Frumkin, A.
Middle–Late Quaternary paleoclimate of northern margins of the
Saharan–Arabian desert: reconstruction from speleothems of Negev desert,
Israel. Quatern. Sci. Rev. 29, 2647–2662 (2010).
Grant,
K. M. et al. The timing of Mediterranean sapropel deposition relative
to insolation, sea-level and African monsoon changes. Quatern. Sci. Rev. 140, 125–141 (2016).
Bar-Matthews,
M., Ayalon, A., Gilmour, M., Matthews, A. & Hawkesworth, C. J.
Sea-land oxygen isotopic relationships from planktonic foraminifera and
speleothems in the eastern Mediterranean region and their implication
for paleorainfall during interglacial intervals. Geochim. Cosmochim. Acta 67, 3181–3199 (2003).
Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, 1–17 (2005).
Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quatern. Sci. Rev. 10, 297–317 (1991).
Fleitmann,
D., Burns, S. J., Neff, U., Mangini, A. & Matter, A. Changing
moisture sources over the last 333,000 years in northern Oman from
fluid-inclusion evidence in speleothems. Quatern. Res. 60, 223–232 (2003).
Rosenberg, T. M. Humid periods in southern Arabia: windows of opportunity for modern human dispersal. Geology 39, 1115–1118 (2011).
Clark-Balzan,
L., Parton., A., Breeze, P. S., Groucutt, H. S. & Petraglia, M. D.
Resolving problematic luminescence chronologies for carbonate- and
evaporite-rich sediments spanning multiple humid periods in the Jubbah
Basin, Saudi Arabia. Quatern. Geochron. 50, 50–73 (2018).
Alonso-Zarza, A. M. Palaeoenvironmental significant of palustrine carbonates and calcretes in the geological record. Earth Sci. Rev. 60, 261–298 (2003).
Estes, R. D. The Behaviour Guide to African Mammals. (Univ. California Press, Berkeley, 1991).
O’Regan,
H. J., Turner, A., Bishop, L. C., Elton, S. & Lamb, A. L. Hominins
without fellow travellers? First appearances and inferred dispersals of
Afro-Eurasian large-mammals in the Plio-Pleistocene. Quatern. Sci. Rev. 30, 1343–1352 (2011).
Groucutt, H. S. et al. Human occupation of the Arabian Empty Quarter during MIS 5: evidence from Mundafan al-Buhayrah. Quatern. Sci. Rev. 119, 116–135 (2015).
Millard, A. R. A critique of the chronometric evidence for hominid fossils: I. Africa and the Near East 500–50 ka. J. Hum. Evol. 54, 848–874 (2008).
Hublin, J. J. et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 546, 289–292 (2017).
Richter, D. et al. The age of the hominin fossils from Jebel Irhoud, Morocco, and the origins of the Middle Stone Age. Nature 546, 293–296 (2017).
Stimpson,
C. et al. Middle Pleistocene vertebrate fossils from the Nefud desert,
Saudi Arabia: implications for biogeography and palaeoecology. Quatern. Sci. Rev. 143, 13–36 (2016).
O'Higgins, P. & Jones, N. Facial growth in Cercocebus torquatus: an application of three-dimensional geometric morphometric techniques to the study of morphological variation. J. Anat. 193, 251–272 (1998).
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2015); http://www.R-project.org
Klingenberg, C. P. MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357 (2011).
Grün, R., Eggins, S., Kinsley, L., Mosely, H. & Sambridge, M. Laser ablation U-series analysis of fossil bones and teeth. Palaeogeogr. Palaeoclimatol. Palaeoecol. 416, 150–167 (2014).
Benson, A. et al. Laser ablation depth profiling of U-series and Sr isotopes in human fossils. J. Arch. Sci. 40, 2991–3000 (2013).
Duval, M. & Grün, R. Are published ESR dose assessments on fossil tooth enamel reliable? Quat. Geochron. 31, 19–27 (2016).
Grün, R. The DATA program for the calculation of ESR age estimates on tooth enamel. Quatern. Geochron. 4, 231–232 (2009).
Grün,
R., Schwarcz, H. P. & Chadam, J. ESR dating of tooth enamel:
coupled correction for U-uptake and U-series disequilibrium. Int. J. Radiat. Appl. Instrum. D 14, 237–241 (1988).
Grün, R. & Katzenberger-Apel, O. An alpha irradiator for ESR dating. Anc. TL 12, 35–38 (1994).
Marsh, R. E Beta-Gradient Isochrons Using Electron Paramagnetic Resonance: Towards a New Dating Method in Archaeology. MSc thesis, McMaster Univ. (1999).
Guérin, G., Mercier, N. & Adamiec, G. Dose-rate conversion factors: update. Anc. TL 29, 5–8 (2011).
Murray, A. S. & Wintle, A. G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat. Meas. 32, 57–73 (2000).
Galbraith,
R. F., Roberts, R. G., Laslett, G. M., Yoshida, H. & Olley, J. M.
Optical dating of single and multiple grains of quartz from Jinmium rock
shelter, northern Australia: Part I, experimental design and
statistical models. Archaeometry 41, 339–364 (1999).
Bøtter-Jensen, L. & Mejdahl, V. Assessment of beta dose-rate using a GM multicounter system. Int. J. Rad. Appl. Instrum. B 14, 187–191 (1988).
Prescott, J. R. & Hutton, J. T. Cosmic ray and gamma ray dosimetry for TL and ESR. Int. J. Rad. Appl. Instrum. D 14, 223–227 (1988).
Gale, S. & Hoare, P. Quaternary Sediments: Petrographic Methods for the Study of Unlithified Rocks (Belhaven and Halsted Press, London, 1991).
Palmer, A. P., Lee, J. A., Kemp, R. A. & Carr, S. J. Revised Laboratory Procedures for the Preparation of Thin Sections from Unconsolidated Sediments (Centre for Micromorphology Publication, Royal Holloway, Univ. London, 2008).
Kemp, R. A. Soil Micromorphology and the Quaternary (Quaternary Research Association, 1985).
Stoops, G. Interpretation of Micromorphological Features of Soils and Regoliths (Elsevier, Amsterdam, 2010).
Rengberg, I. A procedure for preparing large sets of diatom sets from sediment. J. Palaeolimnol. 4, 87–90 (1990).
Battarbee, R. W. & Knen, M. J. The use of electronically counter microspheres in absolute diatom analysis. Limnol. Oceanogr. 27, 184–188 (1982).
Krammer, K. & Lange-Bertalot, H. Bacillariophyceae 2. Teil Epithemiaceae, Suirellaceae (Gustav-Fischer Verlag, Stuttgart, 1988).
Krammer, K. & Lange-Bertalot, H. Bacillariophyceae 3. Teil Centrales, Fragicariaceaa, Eunotiacea (Gustav-Fischer Verlag, Stuttgart, 1991).
Krammer, K. & Lange-Bertalot, H. Bacillariophyceae 4. Teil Achnanthaceae, Kritshe Ergänzungen zu Navicula (Lineolate) und Gomphonema (Gustav-Fischer Verlag, Stuttgart, 1991).
Crawford, R. M., Likhoshway, Y. V. & Jahn, R. Morphology and identity of Aulacoesiera italic and typification of Aulacoseira (Bacillariophyta). Diatom Res. 18, 1–19 (2003).
Navok,
T., Guillory, W. X., Julius, M. L., Theriort, E. C. & Alverson, A.
J. Towards a phylogenetic classification of species belonging to the
diatom genus Cyclotella (Bacillariophyceae): transfer of species formerly placed in Puncticulata, Handmannia, Pliocaenicus and Cyclotella to the genus Lindavia. Phytotaxa 217, 249–264 (2015).
Ter Braak, C. J. F. & Šmilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination Version 4.5 (Microcomputer Power, 2002).
Hill, M. O. & Gauch, H. G. Detrended correspondence analysis: an improved ordination technique. Plant Ecol. 42, 47–58 (1980).
Ter Braak, C. J. F. & Prentice, I. C. A theory of gradient analysis. Adv. Ecol. Res. 18, 271–317 (1988).
Ter Braak, C. J. F. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1179 (1986).
Smol, J. P. et al. Climate-driven regime shifts in the biological communities of arctic lakes. Proc. Natl Acad. Sci. USA 102, 4397–4402 (2005).
Birks, H. J. B. & Gordon, A. D. Numerical Methods in Quaternary Pollen Analysis (Academic, London, 1985).
Juggins, S. ZONE Software Version 1.2. (Univ. Newcastle, 1985).
Bennett, K. D. Determination of the number of zones in a biostratigraphical sequence. New Phytol. 132, 155–170 (1996).
Ryves,
D. B., Juggins, S., Fritz, S. C. & Battarbee, R. W. Experimental
diatom dissolution and the quantification of microfossil preservation in
sediments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 172, 99–113 (2001).
Candy,
I. et al. The evolution of Palaeolake Flixton and the environmental
context of Starr Carr: an oxygen and carbon isotopic record of
environmental change for the early Holocene. Proc. Geol. Assoc. 126, 60–71 (2015).
Domínguez-Rodrigo, M., Barba, R., De la Torre, I. & Mora, R. in Deconstructing Olduvai: A Taphonomic Study of the Bed I Sites (eds Domínguez-Rodrigo, M. et al.) 101–125 (Springer, New York, 2007).
Bunn, H. T. Meat-Eating and Human Evolution: Studies on the Diet and Subsistence Patterns of Plio-Pleistocene Hominids in East Africa. PhD thesis, Univ. Wisconsin (1982).
Bunn, H. T. & Kroll, E. M. Systematic butchery by Pilo/Pleistocene hominids at Olduvai Gorge, Tanzania. Curr. Anthropol. 27, 431–452 (1986).
Binford, L. R. Faunal Remains from Klasies River Mouth (Academic, New York, 1984).
Andrews, P. & Cook, J. Natural modifications to bones in a temperature setting. Man 20, 675–691 (1985).
Blumenschine, R. J. & Selvaggio, M. M. Percussion marks on bone surfaces as a new diagnostic of hominid behaviour. Nature 333, 763–765 (1988).
Fisher, J. W. Bone surface modifications in zooarchaeology. J. Archaeol. Method Theory 2, 7–68 (1995).
Noe-Nygaard, N. Man-made trace fossils on bones. J. Hum. Evol. 4, 461–461 (1989).
Binford, L. R. Bones: Ancient Men and Modern Myths (Academic, New York, 1981).
Stiner,
M., Kuhn, S., Weiner, S. & Bar-Yosef, O. Differential burning,
recrystallization, and fragmentation of archaeological bone. J. Archaeol. Sci. 22, 223–237 (1995).
Shipman,
P., Foster, G. & Schoeninger, M. Bunt bones and teeth: an
experimental study of color, morphology, crystal structure and
shrinkage. J. Archaeol. Sci. 11, 307–325 (1984).
Tong,
H. W., Zhang, S., Chen, F. & Li, Q. Rongements sélectifs des os par
les porcs-épics et autres rongeurs: cas de la grotte Tianyuan, un site
avec des restes humains fossiles récemment découvert près de Zhoukoudian
(Choukoutien). Anthropologie 112, 353–369 (2008).
Dart, R. A. Bone tools and porcupine gnawing. Am. Anthropol. 60, 715–724 (1958).
Behrensmeyer, A. K. Taphonomic and ecological information from bone weathering. Paleobiology 4, 150–162 (1978).
Behrensmeyer, A. K., Gordon, K. & Yanagi, G. T. Trampling as a cause of bone surface damage and psuedo-cutmarks. Nature 319, 402–403 (1986).
Villa, P. & Mahieu, E. Breakage pattern of human long bones. J. Hum. Evol. 21, 27–48 (1991).
Bunn, H. T. in Animals and Archaeology Vol. 1 (eds Clutton-Brock, J. & Grigson, C.) 143–148 (BAR International Series 163, Oxford, 1983).
Scerri,
E. M. L., Groucutt, H. S., Jennings, R. P. & Petraglia, M. D.
Unexpected technological heterogeneity in northern Arabia indicates
complex Late Pleistocene demography at the gateway to Asia. J. Hum. Evol. 75, 125–142 (2014).
Scerri,
E. M. L., Gravina, B., Blinkhorn, J. & Delagnes, A. Can lithic
attribute analyses identify discrete reduction trajectories? A
quantitative study using refitted lithic sets. J. Arch. Method Theory 23, 669–691 (2016).
Groucutt,
H. S. et al. Late Pleistocene lakeshore settlement in northern Arabia:
Middle Palaeolithic technology from Jebel Katefeh, Jubbah. Quatern. Int. 382, 215–236 (2016).
Acknowledgements
We
thank HRH Prince Sultan bin Salman bin Abdulaziz Al-Saud, President of
the Saudi Commission for Tourism and National Heritage (SCTH), and
A. Ghabban, Vice President of the SCTH for permission to carry out this
study. Z. Nawab, President of the Saudi Geological Survey, provided
research support and logistics. Fieldwork and analyses were funded by
the European Research Council (no. 295719, to M.D.P. and 617627, to
J.T.S.), the SCTH, the British Academy (H.S.G. and E.M.L.S.), The
Leverhulme Trust, the Australian Research Council (DP110101415 to R.G.,
ARC Future Fellowship Grant FT150100215 to M.D., and FT160100450 to
J.L.), European Union Marie Curie International Outgoing Fellowship
(PIOF-GA-2013-626474, to M.D.), and the Research Council of Norway (SFF
Centre for Early Sapiens Behaviour, 262618). We thank P. Cuthbertson,
K. Janulis, M. Bernal, S. Al-Soubhi, M. Haptari, A. Matari and
Y. Al-Mufarreh for assistance in the field. We thank I. Cartwright
(Institute of Archaeology, University of Oxford) for the photographs of
AW-1 (Fig. 2a),
I. Matthews (RHUL) for producing the Bayesian age model and M. O’Reilly
(MPI-SHH) for assistance with the preparation of figures. We
acknowledge the Max Planck Society for supporting us with comparative
fossil data, and we thank curators for access to comparative extant and
fossil material in their care (Supplementary Tables 5 and 7). Maps were created using ArcGIS software by Esri.
Author information
Affiliations
School of Archaeology, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, UK
- Huw S. Groucutt
- & Eleanor L. M. Scerri
Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- Huw S. Groucutt
- , Nick A. Drake
- , Eleanor L. M. Scerri
- & Michael D. Petraglia
Australian Research Centre for Human Evolution (ARCHE), Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
- Rainer Grün
- , Julien Louys
- & Mathieu Duval
Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
- Rainer Grün
- & Leslie Kinsley
Saudi Geological Survey, Sedimentary Rocks and Palaeontology Department, Jeddah, Saudi Arabia
- Iyad A. S. Zalmout
- , Abdullah M. Memesh
- , Ammar J. Abdulshakoor
- , Abdu M. Al-Masari
- & Ahmed A. Bahameem
Department of Geography, King’s College London, London, UK
- Nick A. Drake
- & Paul S. Breeze
Department of Geography, Royal Holloway, University of London, London, UK
- Simon J. Armitage
- , Ian Candy
- & Richard Clark-Wilson
SFF Centre for Early Sapiens Behaviour (SapienCE), University of Bergen, Bergen, Norway
- Simon J. Armitage
Geochronology, Centro Nacional de Investigación sobre la Evolución (CENIEH), Burgos, Spain
- Mathieu Duval
PAVE Research Group, Department of Archaeology, University of Cambridge, Cambridge, UK
- Laura T. Buck
- , Emma Pomeroy
- & Jay T. Stock
Earth Sciences Department, Natural History Museum, London, UK
- Laura T. Buck
Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Tracy L. Kivell
Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Tracy L. Kivell
- & Nicholas B. Stephens
School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK
- Emma Pomeroy
Department of Anthropology, University of Western Ontario, London, Ontario, Canada
- Jay T. Stock
Palaeontology, Geobiology and Earth Archives Research Centre, School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, New South Wales, Australia
- Mathew Stewart
School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Gilbert J. Price
Department of Life Sciences, Natural History Museum, London, UK
- Wing Wai Sung
Department of Archaeology, King Saud University, Riyadh, Saudi Arabia
- Abdullah Alsharekh
Saudi Commission for Tourism and National Heritage, Riyadh, Saudi Arabia
- Abdulaziz Al-Omari
- , Khaled M. S. Al Murayyi
- & Badr Zahrani
Department of Archaeology, Hazara University, Mansehra, Pakistan
- Muhammad Zahir
Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington DC, USA
- Michael D. Petraglia
Nenhum comentário:
Postar um comentário
Observação: somente um membro deste blog pode postar um comentário.